Gas/solid flow characteristics in a gas–solid cyclone reactor based on Euler/Lagrange approach

Presenter: Anjun Li
China University Of Petroleum
Contents

INTRODUCTION

EXPERIMENT

SIMULATION

RESULTS AND DISCUSSION

CONCLUSION
Fluid catalytic cracking (FCC) is an important primary conversion in the oil refining industry.

Shortcomings of riser reactors

- Particles backmixing
- Overlong reaction time
- Products over-cracking

A downward gas-solid cyclone reactor was developed for conquering side reactions.
INTRODUCTION

- Gradient distribution-avoid the deep cracking
- Primary separator-separate gases and particles in real time

Research method

Experiment
The complex flow field in cyclone reactor restricted most of the experimental research

Simulation
CFD models play an increasingly important role in process design, and control and/or optimization of complex multiphase systems
Contents

INTRODUCTION

EXPEIMENT

SIMULATION

RESULTS AND DISCUSSION

CONCLUSION
Table 1 – Detail sizes of the cold-model experimental system

<table>
<thead>
<tr>
<th>Item</th>
<th>Height (m)</th>
<th>Diameter (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Companion bed</td>
<td>11.4</td>
<td>0.5-0.8</td>
</tr>
<tr>
<td>Pre-lifting section</td>
<td>2.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Riser</td>
<td>14.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Stripper</td>
<td>4.8</td>
<td>0.5-0.8</td>
</tr>
<tr>
<td>Cyclone</td>
<td>1.3</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Catalysts supply module

Catalysts transport module

The cyclone reactor

The stripper

The data acquisition module
SIMULATION

Model:
- RNG k-epsilon model
- Eulerian–Lagrangian approach

Outlet boundary:
- Gas: pressure outlet
- Particle: \(v_p = 4.15 \text{ m/s} \)
- Particulate loading: 0.31

Inlet boundary:
- Gas velocity: \(v_g = 13.76 \text{ m/s} \)
- Particle: \(v_p = 4.15 \text{ m/s} \)

Wall boundary:
- No-slip conditions
- Different coefficients of restitution

The particle diameter corresponding to the volume fractions 5%, 15%, . . ., 95% are assigned to the arranged parcels. And each incident parcel contains only one particle size.
The validation of the simulation

The pressure drop calculated by DDPM is more reasonable.

A satisfactory agreement has been achieved.
RESULTS AND DISCUSSION

- Dynamic flow of particles

![Diagram showing particle flow and velocity over time](image-url)
RESULTS AND DISCUSSION

 Particle concentration

- Solid concentration is higher in strands.
- The phase interface structure composed of internal pure gas and external mixtures can be observed.
- The phase interface structure can prevent lights gas products from overcracking.
- The shape of the interface tends to be more circular.
RESULTS AND DISCUSSION

Particle concentration

- Particle concentration fluctuates around an appropriate value.
- The fluctuation is severe in the mixing chamber and annulus chamber.
- Clusters formation and fragmentation can be observed in the separation chamber.
RESULTS AND DISCUSSION

Dynamic flow of gas

- The characteristic of circling is well calculated by current model.
- Axial velocity is negative in the central region of the separation chamber.
- Tangential velocity is higher in the mixing chamber and annulus chamber.
- The radial velocity is smaller than other velocity components.
RESULTS AND DISCUSSION

- Kinetic energy of gas

\[K_i = \sum_{cell=n}^{cell=1} \left(\frac{1}{2} \right) m_{gas} |v_{cell}|^2 \]

Tangential and axial kinetic energy accounts for 96.69%-97.11% of total kinetic.

Gas flow is dominated by tangential and axial velocities.
RESULTS AND DISCUSSION

Dynamic flow of gas

- Gas velocity decreases when particle clusters appear, and gas velocity increases when clusters break up.

Z=235 mm

Z=394 mm

Z=659 mm

Z=1309 mm
The results calculated by **DDPM** are more accurate than DPM.

Particles descend in **strands** in the conical segment and separation chamber.

Tangential and axial kinetic energy are accounting for 96.69%–97.11% of total kinetic energy and thus dominant.

The distribution of instantaneous particle concentration and the distribution of instantaneous gas velocity are **interrelated**. Gas velocity decreases when particle clusters appear, and gas velocity increases when clusters break up.
Thank You!

Fluidization XVI