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Accurately 

design and 

optimal use

Suitable for 

direct visual 

observation

Bubble size 

Bubble velocity 

2D beds are qualitative and of 

limited applicability to 3-D beds

Semi-cylindrical fluidized bed

7

Lack of information

More knowledge about 

hydrodynamic

Introduction

Literature review
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Data analysis
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Conclusion 

Enhance the 

fluidization 

quality

Non cylindrical fluidized beds

• Vibration of the bed

• Rotation of the bed

• Turbulence promoters

•Operation over a wide range of

gas superficial velocity

•Possibility of fluidizing a wide

range of particles of different

sizes or densities

• Intensive particle mixing

Problem statement
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Literature review

Ref. Bed type Method Particle Major findings

Hatate et al.

(1985)
Semi cylindrical Imaging Sand

• Application of bubble growth expression of 3D bed

for semi cylindrical fluidized

• Application of bubble rise velocity expression of 3D

bed for semi cylindrical fluidized

Singh et al. 

(2005 & 2006)

Semi-cylindrical

Cylindrical

Hexagonal

Square

Pressure drop
Dolomite

Coal 

• Under similar operating conditions minimum

bubbling velocity is maximum in case of either semi-

cylindrical or hexagonal fluidized beds and

minimum in case of square one

• Also, bed fluctuation is maximum in case of square

bed and minimum in semi-cylindrical one.
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Ref. Bed type Method Particle Major findings

Escudero et al. 

(2011& 2012)
Cylindrical

Pressure signals

Imaging

Glass beads

Walnut shell

Corncob

• Minimum fluidization velocity is not affected by the

change in bed height, but increases by material density

• Increasing the H/D ratio enhanced bubble coalescence

creating slugs that flow thorough the center of the bed,

producing regions of low gas holdup near the walls of the

fluidized bed

•Bed hydrodynamics were similar for all bed heights, but

differed when the material density was changed

Badday et al. 

(2014)
Cylindrical Pressure signals Sand

• Minimum fluidization velocity increased as the particle

size increased

• The bed voidage increased in the bottom section of bed and

decreased in the other sections with increasing the gas

superficial velocity

Shabanian and  

Chaouki (2015)
Cylindrical

Pressure signals

Fiber optic

Coated sugar

• Minimum fluidization velocity increases with interparticle

forces

• Gas is more prone to pass through the bed in the emulsion

phase when interparticle forces increase

• Enhancing interparticle forces will increase the bubbling to

turbulent regime transition velocity

Literature reviewLiterature review
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Cylindrical Semi-cylindrical

Height (cm) 200 100

Diameter (cm) 14 14

Type of distributor perforated perforated
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Experimental setup

Cylindrical Semi-cylindrical
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Particle properties

Density (kg/m3) Size (µm)

Glass bead І 2500 120

Glass bead ІІ 2500 290

Glass bead ІІІ 2500 450

Initial bed height of 21 cm (L/D =1.5)

Geldart group B

Introduction

Literature review

Experimental  procedure

Data analysis

Results & discussion

Conclusion 

7/26



99999

Experimental methods

 Pressure probe

-1 – 10 bar 

 14 cm above the distributor plate (L/D =1)

 Fiber optic

 14 cm above the distributor plate (L/D=1)

 Digital image
Frequency of 400  Hz

Test duration: 180 s

Frequency of 10000  Hz

Test duration: 180 s
Test duration: 30 s

120 frames per seconds
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Time domain

Standard deviation

Frequency domain Fourier transform

Welch
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Bubble velocity Calibration

Calculation

Bubble size
Calculation

Bed voidage Calibration

Calculation

Fiber optic signal analysis
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Video

• ProDRENALIN

Removing fish eye

• Video to JPG Converter

Picture

• Image j
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 Bubble aspect ratio 

 Bubble size

 Bubble rise velocity 
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Image processing 
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Standard deviation of pressure fluctuations

C. Wen, Y. Yu, A generalized method for predicting the minimum fluidization velocity, AIChE Journal, 12 (1966) 610-612.
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dp = 120 µm

dp = 450 µm

Solid: semi-cylindrical

Hollow: cylindrical

Type of bed Semi-cylindrical Cylindrical

dp (µm) 120 290 450 120 290 450

Experimental Umf (m/s) 0.021 0.089 0.210 0.02 0.090 0.205

Wen and Yu (m/s) 0.014 0.082 0.196 0.014 0.082 0.196
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Power spectral density function of pressure fluctuations
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Power spectral density function of pressure fluctuations
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PSDF of pressure in semi-cylindrical Vs. cylindrical
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Distribution of local bed voidage
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Distribution of local bed voidage
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Time-averaged voidages for particle of 450 µm 

H. Cui, N. Mostoufi, and J. Chaouki, "Characterization of dynamic gas–solid distribution in fluidized 

beds," Chemical Engineering Journal, vol. 79, pp. 133-143, 2000.
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Bubble aspect ratio of semi-cylindrical bed
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Bubble rise velocity
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Bubble rise velocity of semi-cylindrical bed
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Average bubble size
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Average bubble size
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Conclusions
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According to standard deviation results, Umf and Uc were independent of the
cross-section of fluidized bed.

PSDF of pressure fluctuations showed that increasing the gas velocity
leads to formation of larger clusters and increases number and size of
bubbles in the bed.

PSDFs in both beds are very similar with minor differences in intensity in
low frequencies at high gas velocity. Thus, number of large bubbles in the
semi-cylindrical bed is slightly higher than in the cylindrical bed at high
velocity.

1

2

3
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Conclusions

Minor effect of cross-section of fluidized bed on average bubble size and
rise velocity was observed when compared at the same particle size and
superficial gas velocity.

Mori and Wen for bubble growth and Davidson and Harison for
bubble rise velocity were found to be applicable to both beds.

Results indicated that the hydrodynamics and bubble dynamics
parameters in semi-cylindrical fluidized bed is in compliance with
the cylindrical fluidized bed.

Measuring bubble parameters in the semi-cylindrical bed was much
easier than in the cylindrical bed. So semi-cylindrical bed is a very useful
tool for being employed for cold model works in laboratories instead of
two dimensional or cylindrical fluidized.
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