Drying of cohesive particles in vibrated fluidized beds

Modeling hydrodynamics under mechanical vibration

S. Lehmann, E.-U. Hartge, S. Heinrich

Institute of Solids Process Engineering and Particle Technology, Hamburg University of Technology

A. Jongsma, I.-M. deLeeuw

Tetra Pak CPS, Heerenveen, The Netherlands

F. Innings

Tetra Pak Processing Systems, Lund, Sweden

Motivation

2

Cohesive powders gain importance:

nano-particles, pharmaceutical and food powders

Vibration enhances fluidization of cohesive powders:

- vibrated fluidized bed (VFB) research only in lab-scale
- scarce research on VFB drying of milk powder

* Lehmann et al., Fluidization characteristics of cohesive powders in vibrated fluidized bed drying at low vibration frequencies, Powder Technology, accepted

3

Sören Lehmann

www.tuhh.de/spe

Methods Modeling approach

Basis: Alaathar [1,2]

- steady state model of continuous fluidized bed dryers
- for Geldart B particles
- distributed parameters: T, d_p , x, τ
- drying kinetics model [3 5]
- fluid mechanics model [6]
- key parameter: bubble volume fraction ε_b

Required adjustments:

- dynamic model
- cohesive powders
- influence of vibration
- [1] Alaathar et al., Powder Technology 238, (2013) [2] Alaathar, PhD Thesis, TUHH, (2017)
- [3] Groenewold and Tsotsas, Drying Technology, 15 (1997)
- [4] Burgschweiger et al., Can. Journ. of Chem. Engin., 77 (1999)
- [5] Burgschweiger and Tsotsas, Chem. Engin. Science, 57 (2002)
- [6] Werther and Wein, AIChE Symp., 90 (1994)

Methods Experiments

Material:

Whole milk powder					
$ ho_s$	[kg/m³]	866.4±73.5			
d_{32}	[µm]	101.7±1.3			

Investigated process parameters:

- gas flow rate
- vibration intensity Λ

$$\Lambda = \frac{a_{vibration}}{g} = \frac{(2\pi f)^2 \cdot A_{vib}}{g}$$

Whole milk powder: x = 4 wt.-%; m = 12.5 kg; u = 0.3 m/s; $\Lambda = 0.58$

Analysis of fluid mechanics via:

- Δp measurement
- visual observation (high speed camera)

Characteristics:

- bed expansion
- gas hold-up / bubble volume fraction
- lower limit of fluidization (u_{mf})

 ρ_s : particle density; d_{32} : Sauter mean diameter; *X*: powder moisture content; *f*: frequency; A_{vib} : amplitude, *g*: gravitational acceleration; Λ : vibration intensity

					0	(6)	A REAL PROPERTY AND	
frequency	f	[Hz]	0	4	6	8	10	
amplitude	A _{vib}	[mm]	0	5	4	3.5	3	
intensity	Λ	[-]	0	0.32	0.58	0.90	1.21	

Fluidization XVI - Guilin, China

Drying of cohesive particles in vibrated fluidized beds

Sören Lehmann

www.tuhh.de/spe

Minimum fluidization velocity u_{mf}:

Whole milk powder: x = 4 wt.% m = 25 kg

6

Bed expansion:

٠

7

 $\varepsilon = 1 - \frac{m}{A \cdot h \cdot \rho_s}$

Whole milk powder: x = 4 wt.%, m = 12.5 kg; $\varepsilon_{\text{bulk}} = 0.53$

 h_{vib}

0.25

8

www.tuhh.de/spe

Image analysis:

- high speed image series (100 fps)
- segmentation of grey scale image series (Matlab)
- calculate bubble volume fraction (Matlab)

- non-invasive
- global measurement
- only at the glass wall (2D plane)

vibrated fluidized

Valid representation of hydrodynamics inside the bed for low excess gas velocities (u-u_{mf} < 0.25) [7]

[7] Lehmann et al., Fluidization characteristics of cohesive powders in vibrated fluidized bed drying at low vibration frequencies, Powder Technology, accepted

Fluidization XVI - Guilin, China	Drying of cohesive particles in v
h a da	Cären Lehmenn

- slight decrease of bubble volume fraction
- increase of bed expansion
- vibration causes expansion of suspension phase
- explains increased heat and mass transfer rates

10

Results Modeling

Bubble volume fraction:

• modified correlation from Hilligardt and Werther [8]

$$\varepsilon_{b} = \frac{\dot{V}_{b}}{u_{b}}$$
$$u_{b} = \dot{V}_{b} + 0.71 \cdot \vartheta \cdot \sqrt{g \cdot d_{v}}$$
$$\dot{V}_{b} = \Psi \cdot \left(u - u_{mf}\right) \cdot \frac{1}{(1 + \Lambda)}$$

Bubble diameter:

- correlation from Zou et al. [9]
- for cohesive particles

$$d_{v} = 0.21 \cdot \frac{\left(u - u_{mf}\right)^{0.49} \cdot \left(h + 4\sqrt{A_{0}}\right)^{0.48}}{a^{0.2}}$$

[8] Hilligardt and Werther, Ger. Chem. Eng. 9 (1986), 215-221 [9] Zou et al., Powder Technology 212 (2011), 258-266

Whole milk powder: x = 4 wt.-%, m = 25 kg, u = 0.2 m/s

bold: vibration dependent parameter

 d_{v} : bubble diameter; *h*: height over distributor; ε_{b} : local bubble volume fraction; u_{b} : bubble rise velocity; *g*: gravitational acceleration; ϑ : hydrodynamic constant; *u*: gas velocity; u_{mf} : minimum fluidization velocity; \dot{V}_{b} : apparent gas flow rate per bubble cross sectional area; Ψ : hydrodynamic parameter for bed dimensions; A_{0} : cross sectional area of distributor orifices ($A_{0} \approx 0$ for porous plate)

Sören Lehmann

Results Modeling

12

SPE

Bed porosity:

 $\varepsilon = 1 - (1 - \varepsilon_b)(1 - \varepsilon_d)$

Porosity of dense phase:

 modified Richardson and Zaki correlation [10]

$$\varepsilon_d = \varepsilon_{mf} \cdot \left(\frac{u_d}{u_{mf}}\right)^{\frac{1}{4.65 \cdot (1+\Lambda)}}$$

Gas velocity in dense phase:

• according to Clift et al. [11]

 $u_d = \boldsymbol{u_{mf}} \cdot (1 + 1.5 \cdot \boldsymbol{\varepsilon_b})^{\frac{2}{3}}$

[10] Richardson and Zaki, Chem. Eng. Sci., 3 (1954), 65-73[11] Clift et al., Fluidization 4 - Proceedings, (1983), 77-85

 ε : bed porosity; ε_d : porosity of dense phase; ε_b : local bubble volume fraction; ε_{mf} : bed porosity at minimum fluidization; u_d : gas velocity in dense phase; Λ : vibration intensity; u_{mf} : minimum fluidization velocity

bold: vibration dependent parameter

Set of modified correlations:

> good prediction of ε_b and ε under vibration

Conclusion

Summary:

Pilot plant scale VFB dryer for comprehensive experiments:

Effect of vibration:

- reduces u_{mf}
- reduces bubble volume fraction
- increases bed expansion
- expansion of suspension phase

Modeling of hydrodynamics under vibration:

- set of modified correlations for prediction of
 - bubble volume fraction
 - bed porosity
- correlation are unchanged for non-vibrated cases

Outlook:

- testing model for other cohesive powders
- dynamic modeling of VFB dryers

Thank you for your attention!

