Techno-Economic Modeling of Dual-Purpose LNG LCO₂ Shipping

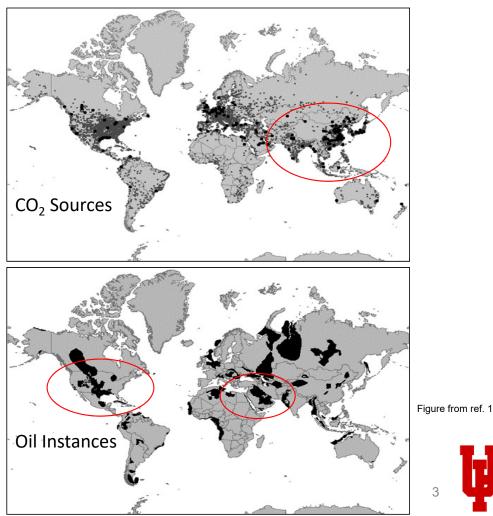
Rafael De Leon, Aparajita Datta, Ramanan Krishnamoorti

17 July 2019

Carbon Management Technology Conference

UNIVERSITY of HOUSTON

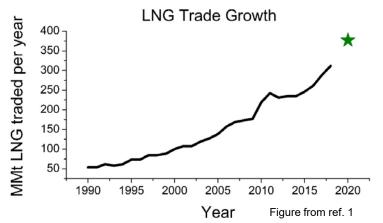
CULLEN COLLEGE of ENGINEERING


Outline

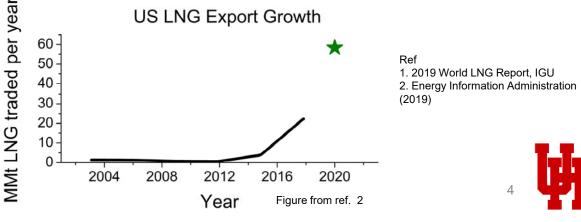
- Motivation
- Proposed Model to exploit CO₂ as a commodity feedstock & optimize shipping
- Techno-Economic Analysis
- Results & Opportunities
- Conclusions

Motivation

- ~ 37 Gt CO₂ emitted globally per year
- Decarbonization is a necessity; however CO_2 is viewed as a waste product and not a commodity
- In the absence of utilization, CO_2 removal will be a cost center
- Transportation is a significant part of the current cost structure; source-use matching is not optimized

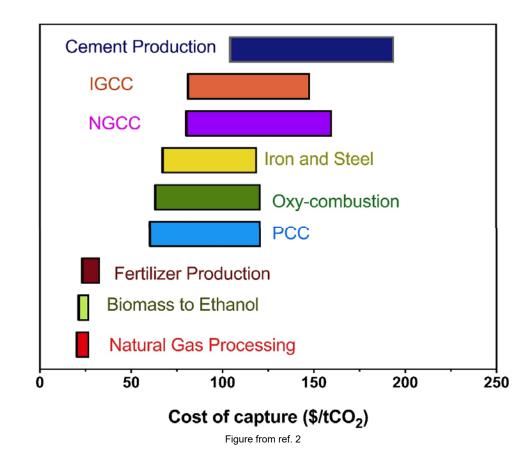


Ref.


1. Damen, K., et al. (2005). "Identification of early opportunities for CO2 sequestration-worldwide screening for CO2-EOR and CO2-ECBM projects." Energy 30(10): 1931-1952.

Global LNG Trade

- 317 MM t of LNG traded globally in 2018
- 525 LNG carriers; ~ 5,100 voyages in 2018
- Substantial and continued growth ~10% in LNG trade & carriers
- Matching with EOR:
 - -North Sea and US have suitable oil fields -Japan and South Korea have carbon credits
- US 45Q is incentive for use or storage of CO₂



CO₂ Value Addition

- CO₂ capture costs range from \$20-200 /tCO₂
- Additional cost for transport, conversion & sequestration
- Potential Value Addition: CO₂ for EOR
 - ~1 4 Barrels of oil per tCO_2 ~\$65 - \$260/ tCO_2
- CO₂ to Chemicals/Fuels
 - Economically feasible if energy is free or hydrogen is readily available

Ref.

2. Datta, A., et al., Advancing Carbon Management through the Global Commoditization of CO2 - The case for Dual-use LNG-CO2 Shipping, under review

^{1.} Gibbins, J. and H. Chalmers (2008). "Carbon capture and storage." Energy Policy 36(12): 4317-4322.

Transport Costs

- Pipelines are advantageous for short distances; not for long distance source to use matching
- Extrapolation of exclusive transport costs to 17,000km is ~\$62/tCO₂
- LNG ships returning empty present opportunity to cut CO₂ transport costs
- Combined with CO₂ based EOR, a potentially compelling economic argument can be made

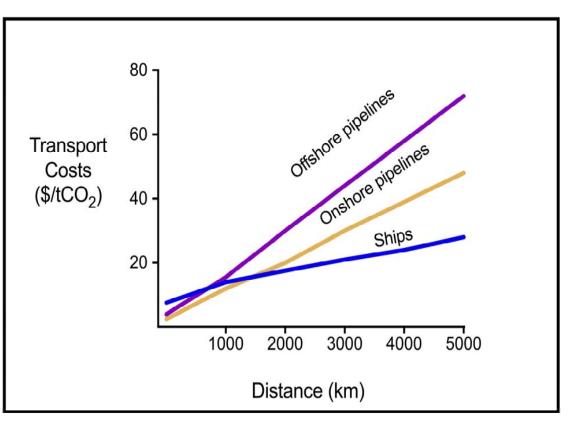
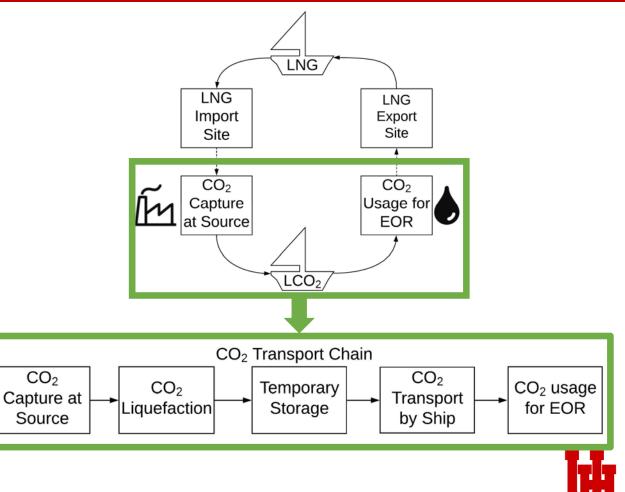


Figure from ref. 1


Ref. 1. Global CCS Institute

Proposed Process

- LNG ship w/o cargo on return journey
- Empty ship travels from South Korea to Gulf of Mexico (Texas)
- Capture of CO₂ in South Korea
- Transport to GoM
- Use CO₂ in GoM for EOR
- Utilize US and Korean incentives
- Technoeconomic model to quantify ROI
- Existing CO₂ tanker ships -Anthony Veder (Dutch): 1 Ship 1250m³

-IM Skaugen (Norwegian): six 10,000m³

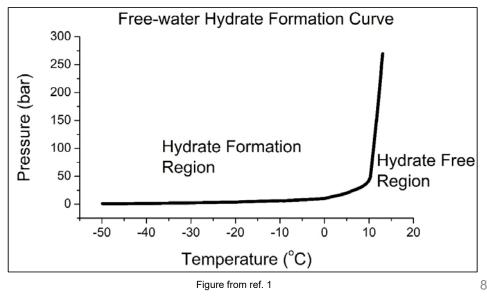
-Normal cargo is LPG (-48°C, 1 bar)

Material Comparison

- Refrigeration requirements
- Pressurization
- Density
- Flammability
- Contaminant Challenges:

 CO_2 - Hydrate formation @ -50 °C and 7 bar with water<100 ppm

Corrosiveness of water contamination


 LNG
 CO2

 Temperature (°C)
 -163
 -50

 Pressure (bar)
 1
 7

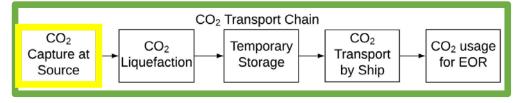
 Viscosity (cp)
 0.2
 0.19

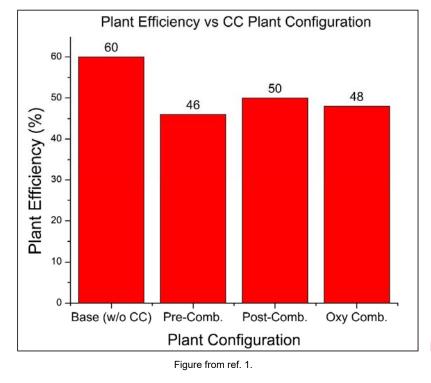
 Density (kg/m³)
 470
 1152

1. Onyebuchi, V.E., et al., A systematic review of key challenges of CO2 transport via pipelines. 2017.

Techno Economic Modeling

- TEA of dual shipping scenario
- LCO₂:
 - 1. Capture,
 - 2. Liquefaction,
 - 3. Temporary storage,
 - 4. Shipping,
 - 5. Regasification + EOR
- Analysis of Additional CAPEX
- Modeling of OPEX




Carbon Capture

- Assuming 5,000 tCO₂ captured each day (~2 MM tCO₂ per year)
- ~500 MW Natural gas power plant
- Technological maturity
 - Solvents
 - Sorbents
 - Membranes
- Cost and flexibility of CC plant types
- Retrofit investment costs: Post vs Oxy, 870\$/kWh vs 1530 \$/kWh

Carbon capture costs are due to energy intensity of capture process; Costs are largely recovered through tax credits in Korea

Ref.

^{1.} Kanniche, M., et al., *Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture.* Applied Thermal Engineering, 2010. **30**(1): p. 53-62.

Liquefaction

- Types of systems
 Open systems
 Closed systems
- Comparable costs
- Open compression cycle
- Four stage compressor, two process heat exchangers, and two multistream exchangers
- Removal of volatiles and water
- Direct costs and electricity account for ~70% of costs

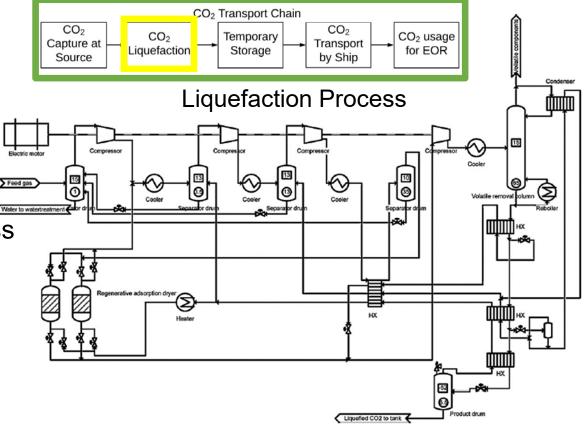


Figure from ref. 1

1. Lee, U., et al., Carbon Dioxide Liquefaction Process for Ship Transportation. Industrial & Engineering Chemistry Research, 2012. 51(46): p. 15122-15131.

Temporary Storage & Vessel

- Needed to store accumulating CO₂ at CC plant
- Should be 1.5 times the size of the vessel
- Material steel, thickness based on pressure¹
- Cost capacity equation
- Complexity factor to account for carrying LNG and LCO₂
- Sprayers, reinforced tankers, and associated piping
- Conventional LNG vessel cost ~\$330MM
- Dual-Purpose cost: \$409MM

Ref.

Vessel Operation Characteristics

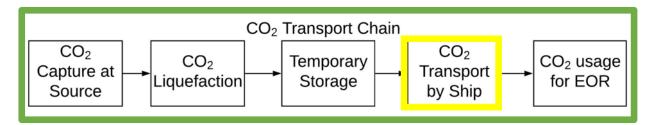
Vessel Speed	14 knots
Voyage Distance	17,000 km
Trip time (includes 1 day each for unloading and loading)	30.4 days
Number of Vessels	4 vessels
DWT per vessel	80,000 tons per vessel

$$I_n = I_r \left[\frac{S_n}{S_r}\right]^{S_f} C_f$$

Ref. 2

2. Aspelund, A. and T. Gundersen, A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage – Part 1. Applied Energy, 2009. 86(6): p. 781-792.

^{1.} Kang, K., et al., Estimation of CO2 Transport Costs in South Korea Using a Techno-Economic Model. Vol. 8. 2015. 2176-2196


Dual-Purpose Vessel: OPEX

- Increasing costs

 Fuel cost: laden vs
 empty
 - -Port costs
 - -Canal fees
- Fuel: \$3/tCO₂
- Port: \$1/tCO₂
- Canal: \$0.59/tCO₂
- Reduced transport costs: -\$62/tCO₂ vs \$26/tCO₂
 ~60% decrease

1. Psaraftis, H.N. and C.A. Kontovas, *Ship speed optimization: Concepts, models and combined speed-routing scenarios.* Transportation Research Part C: Emerging Technologies, 2014. **44**: p. 52-69.

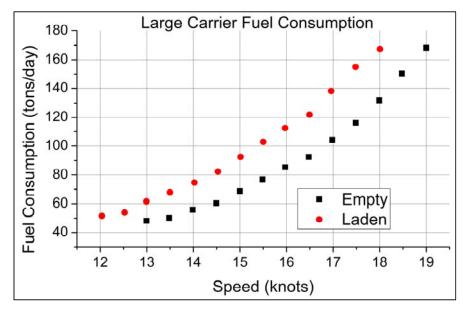
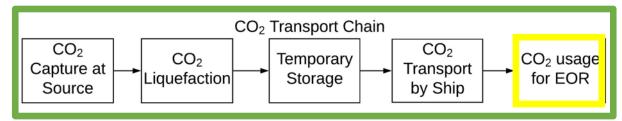
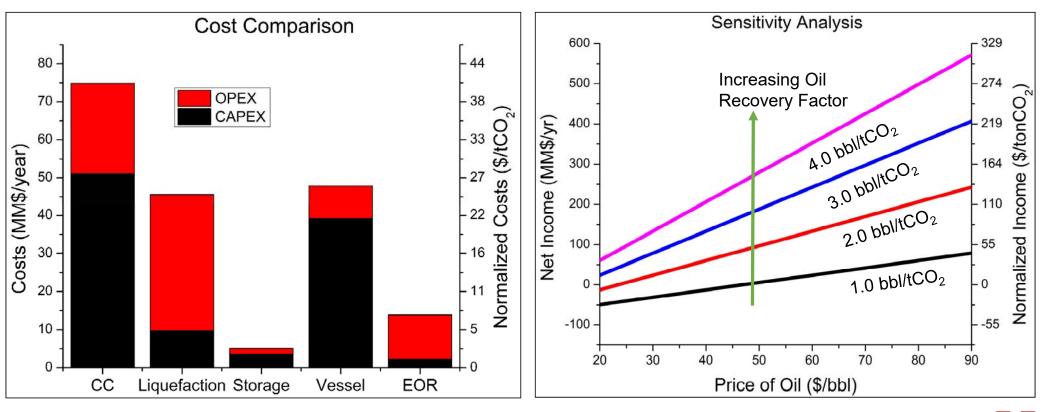



Figure from ref. 1

CO₂-EOR

- Based on miscibility of CO₂ with oil
- Function of temperature and pressure
- Screening criteria include: depth, permeability, and viscosity
- Southeast Texas well used for reference
- Major costs include: equipment for wells, CO₂ recycle plant CAPEX, and CO₂ recycle plant OPEX

Well Characteristics		
Depth (ft)	6000	
Total Oil Production (million barrels)	82	
Produced Oil (bbls/ton of stored CO ₂)	1.5	



Results

	Total (MM US\$/yr)	US\$ per ton CO ₂	
Revenue			
South Korean Tax Credit	38	21	
US 45Q for EOR	64	35	
Sale of Crude Oil	172	97	
Total Revenue	274	153	
	Costs		
CO ₂ Capture	75	41	
CO ₂ Liquefaction	46	25	
Temporary Storage	5	3	
Vessel Costs	48	26	
EOR Costs	14	8	
Total Costs	187	103	
Net Income	87	50	

Results

Oil Recovery Factor = barrels of oil recovered/tCO₂ stored

Limitations and Future Scope

- TEA and the valorization of CO₂ are highly sensitive to policy incentives, which may not be stable over time
- Analysis is focused on US and South Korea; however, economic gains may be greater in other countries if
 - There is an incentive to capture and utilize CO₂
 - Fields are mature and amenable to CO₂-based tertiary recovery
- Regulatory framework for sharing profits and environmental credits between countries needs to be addressed

Conclusions

- Eliminated the cost of operating an empty LNG ship on its return journey and cut transport costs from \$62/tCO₂ to \$26/tCO₂
- Process provides a market for CO₂ mitigation with a net income of \$50/tCO₂
- Provides a compelling economic argument for dual-shipping of LNG and LCO₂ paired with CO₂ based EOR

Acknowledge funding from:

Thank you

Appendix: Carbon Capture Cost Tables

	Year: 2012
Capital Cost, \$/kW	525
O&M, mills/kWh	2.4
Heat Rate (LHV), Btu/kWh	5677
Incremental Capital Cost,	829
\$/(kg/h)	
Incremental O&M, mills/kg	4.68
Energy Requirements, kWh/kg	0.297
Yearly Operating Hours, hrs/yr	6570
Capital Charge Rate, %/yr	15
Fuel Cost (LHV), \$/MMBtu	2.93
Capture Efficiency, %	90
Reference Plant	
CO ₂ Emitted, kg/kWh	0.337
coe: CAPITAL, mills/kWh	12
coe: FUEL, mills/kWh	16.6
coe: O&M, mills/kWh	2.4
Cost of Electricity, ¢/kWh	3.1
Thermal Efficiency (LHV), %	60.1

Capture Plant	
Relative Power Output, %	90
Heat Rate (LHV), Btu/kWh	6308
Capital Cost, \$/kW	894
CO ₂ Emitted, kg/kWh	0.037
coe: CAPITAL, mills/kWh	20.4
coe: FUEL, mills/kWh	18.5
coe: O&M, mills/kWh	4.4
Cost of Electricity, ¢/kWh	4.33
Thermal Efficiency (LHV), %	54.1
Comparison	
Incremental coe, ¢/kWh	1.23
Energy Penalty, %	10
Mitigation Cost, Capture vs. Ref., \$/t of CO ₂ avoided	41

Appendix: Liquefaction CAPEX

	Cost (MM\$)
Direct Costs	
Purchased Equipment	22
Purchased equipment installation	4
Instrumentation and control	1
Piping	4
Electrical	1
Building and building services	4
Yard improvements	1
Services facilities	5
Land	1
Total direct Costs	45
Indirect Costs	
Engineering	3
Construction expenses	3
Contractor's fees	1
Contingency	3
Total Indirect Costs	11
Total Capital Investment (CAPEX)	66 P4

Slide 21

R4	round up to MM \$ Ramanan, 7/15/2019
R12	done, thanks

Rafael, 7/15/2019

Appendix: Liquefaction OPEX

	Cost (MM\$/year)
Fixed charges	
Local taxes	0
Insurance	0
Direct production costs	
Cooling water	2
Electricity	23
Maintenance	1
Operating Labor	1
Supervision and support labor	0
Operating supplies	0
Laboratory charges	0
Overhead costs	1
General Expenses	
Administrative cost	0
Distribution and marketing	1
R&D costs	1
Total production cost (OPEX)	30

Appendix: Temporary Storage

Storage Size	103,693	m ³
	Cost (MM\$)	Normalized cost (\$/tCO ₂)
Annualized CAPEX of the tank	4	2
OPEX of the tank	1	1
Total cost of the tank	5	3

Appendix: Vessel Costs OPEX

	Cost (MM\$)	Normalized cost (\$/tCO ₂)
Canal Fees	1	1
Port Cost	2	1
Fuel Cost	5	3
Total	8	5

Appendix: Vessel Costs CAPEX

$$I_n = I_r \left[\frac{S_n}{S_r}\right]^{S_f} C_f$$

Parameter	Value	Unit
I _r	45	MMUSD
S _n	161791	m ³
S _r	12000	m ³
S_f	0.85	unitless
C_f	1.35	unitless

	Additional CAPEX	
one ship	79	MM\$/year
4 ships	315	MM\$/year
Annualized Cost	39	MM\$/year

Appendix: EOR Costs

	MM\$/yr	\$/tCO ₂
Capital costs		
well cost	0	0
recycle plant	1	1
CO ₂ distribution	1	1
compressor	0	0
Lease Equipment for Fluid Management	0	0
Lease Equipment Costs for New Injection Wells	0	0
Operating costs		
recycle plant	8	4
Compressor	1	1
Annual O&M Costs, Including Periodic Well Workovers	0	0
Fluid lifting costs	1	0
Regas cost	2	1
Injection Energy Costs	0	0
Total	14	8

呐