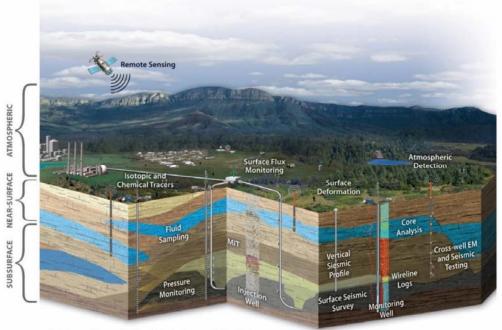
Sensor and Control Technologies for Geologic CO₂ Storage Operations – A DOE Carbon Storage Project Review

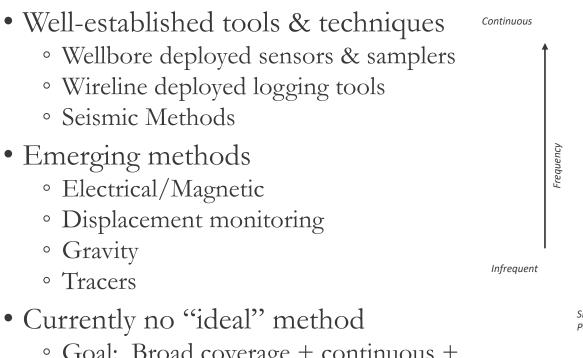
July XX, 2019


William Aljoe, Project Manager, Carbon Storage Team

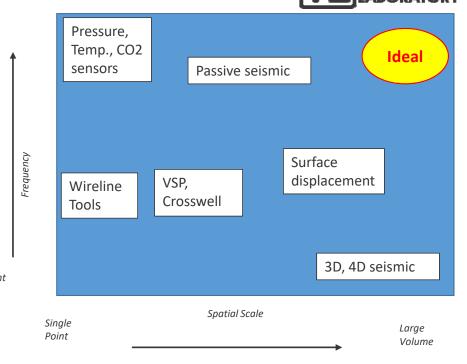
Objectives of Sensor Systems in Carbon Storage

- <u>Plume detection</u>: Track the location of the injected CO₂ plume and pressure front within the storage reservoir
- <u>Leakage potential</u>: Determine whether injection wells, other wells, and surrounding seal formations are damaged or prone to unintended CO_2 release.
- <u>Seismicity potential:</u> Determine whether injection pressures may induce seismic events
- <u>Assurance</u>: Demonstrate that injected CO_2 has not entered overlying groundwater, soil, or the atmosphere
- <u>Compliance:</u> EPA requirements for CO₂ injection wells (UIC Class VI)

Monitoring, Verification, and Accounting (MVA)



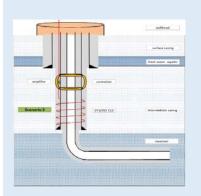
Background Image Courtesy of Schlumberger Carbon Services



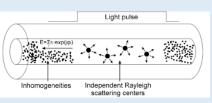
NATIONAL

Tools & techniques for detecting CO₂ plume, pressure front, and leakage potential

 Goal: Broad coverage + continuous + high resolution + low cost


(Adapted from Lawrence Livermore National Laboratory)

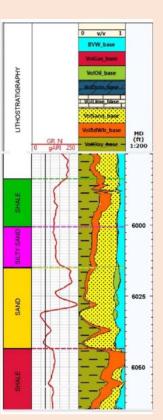
NATIONAL


ECHNOL

Plume Detection: Wellbore-deployed tools & techniques

Helical wound DAS cable for improved sensitivity

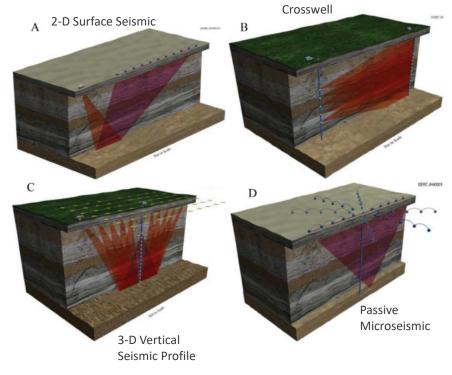
ENERGY


Wellbore-deployed sensors

• Benefits:

- Commercial technology (P, Benefits: T, acoustic)
- Permanent installation
- Distributed (fiberoptic) sensor locations
 - Can create continuous data Challenges: stream
- Challenges:
 - Multiple wellbores required
 - Sensor installation & maintenance cost
 - Potential leakage pathways

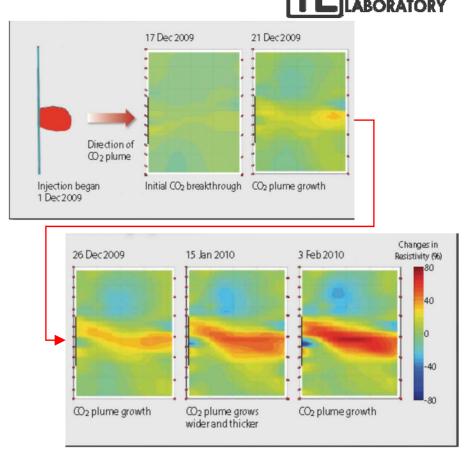
Wireline logs


- Commercial technology
- Can provide reasonable estimate of CO2 saturation
- - Multiple wellbores required
 - Repeat surveys may be costly
 - Working fluids and wellbore conditions may affect log results

NATIONAL

Plume Detection: Seismic methods

- Tools & Techniques:
 - Surface; crosswell; VSP; passive seismic
- Benefits
 - ° Can be used for plume detection, leak potential
 - Commercial technology, many providers
 - Can cover large areas
- Challenges:
 - High cost; cannot be done frequently
 - Time delays (data acquisition, processing, interpretation)
 - Difficulties in signal resolution
 - $\circ\,$ Not sensitive to differences in CO_2 saturation

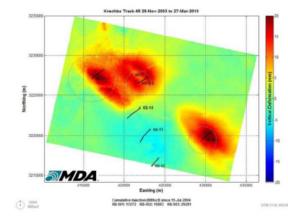

(Source: Hamling et al., 2011)

ATIONAI

Plume Detection: Electrical methods

- Tools & Techniques:
 - Electrical Resistance Tomography (ERT); Electromagnetic tomography (EM);
- Benefits:
 - $^{\circ}\,$ Allows estimation and mapping of CO_2 saturation in the subsurface
 - Data resolution can be increased by decreasing electrode spacing
- Challenges:
 - Technology and data processing/interpretation not as mature as seismic
 - May require non-conductive well casings
 - Repeat surveys may be costly

Resistivity Distribution from Crosswell Survey at Cranfield

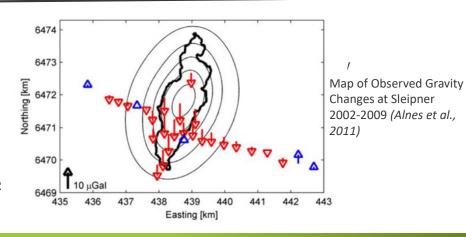

NATIONAL

TECHNOLOG

Plume Detection: Other methods

Surface Displacement (InSAR)

- Benefits:
 - Highly precise measurements (mm) over large area (100 km x 100 km)
- Challenges:
 - Requires surface access and multiple stations
 - Confounding factors: vegetation, complex terrain, human activity
 - Displacement may not indicate risk



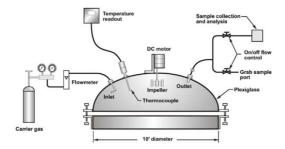
Satellite Image of Cumulative Surface Deformation at In Salah)

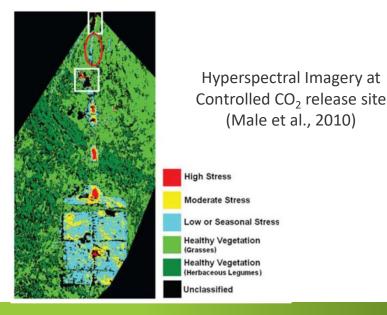
(Mathieson et al., 2011)

NATIONAL

ECHNOLOG

Gravity

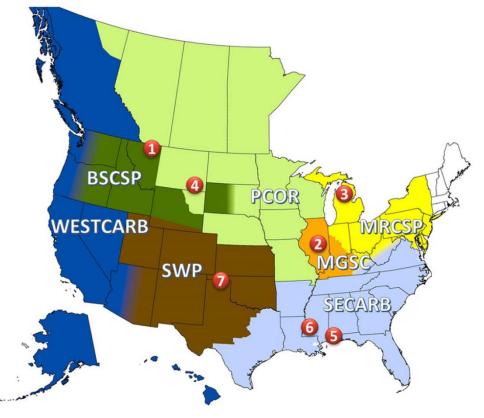

- Benefits:
 - Provides direct assessment of CO2 mass
- Challenges:
 - Technology data processing/interpretation less mature
 - · Confounding factors: tides, instrument drift
 - Limited detection and resolution unless tool located near CO₂ reservoir
 - Multiple surveys (boreholes) required for plume mapping


Assurance Monitoring (has a leak occurred?)

NATIONAL ENERGY TECHNOLOGY LABORATORY

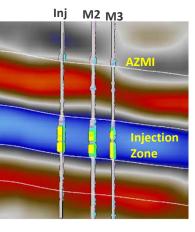
- Sensor deployment locations:
 - Shallow groundwater (EPA Class VI focus)
 - Soil/vadose zone/vegetation
 - Atmosphere
- Benefits:
 - Commercial sensors and well-accepted sampling techniques are available
 - Continuous data can be obtained
 - ° Results easily understood by public
- Challenges:
 - Potential for false positives
 - Robust baseline may be difficult to obtain
 - Difficult and expensive to achieve continuous, broad areal coverage
 - May not yield actionable information

Soil flux chamber (adapted from ASTM, 2006b)



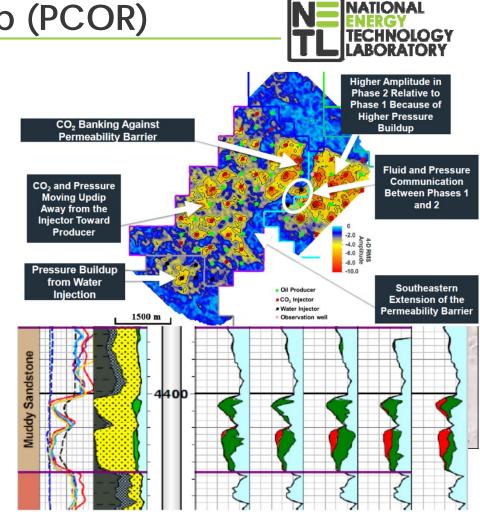
DOE R&D Projects - Technology Validation

- Regional Carbon Sequestration Partnerships (RCSPs)
 - Large-scale field experiments
 "Learn by Doing"
 - Over 11 million metric tons stored (2009-present)
 - Investigated a wide variety of sensors, systems and techniques for monitoring CO₂ storage operations



Southeast Regional Carbon Sequestration Partnership (SECARB) - Cranfield Site

- CO₂-EOR site (Denbury Resources)
 - ~12 miles east of Natchez, MS; > 5 years of monitoring; > 5M metric tons stored
 - Technical team led by Bureau of Economic Geology, UT-Austin
- Largest suite of monitoring technologies all focused on one spot
 - In-zone and above-zone temperature, pressure, chemistry
 - Well logs
 - 3D seismic; VSP; crosswell
 - ERT; gravity; shallow GW chemistry; soil gas



	Monitoring Activity	Freq.	Pre-injection			Injection				Post-Injection					
			2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Surface	Aerial imagery	SA		x	х	х	х	х	x	x	x	х	x	x	x
	Eddy covariance	С					х	х	х						
	Soil flux - network	W-Q		x	x	x	x	х	x	x					
	Soil flux - multiplexer	С			х	х	х	х	х	х					
	Tunable diode laser- single path	С					х	х							
	Tunable diode laser- multi path *	С								х					
	InSAR *	BW				х	x								
	Continuous GPS *	С					х	х	х						
Near-Surface	Soil gas sampling	Q 2		Ľ H		8⊞	ťΗ	╏⊞	1			\rightarrow	- {	-{	6900
	Shallow groundwater sampling	N	Ş	E S	- H	$\Sigma \equiv 1$	5	$\{ \parallel$	\$	¥ -	Ş	Ş	Ş	Ş	
	Shallow electrical earth resistivity *	A	P	1				Ξ	}	3 -	RE				
Subsurface	Pressure/temp VW1 and CCS1	C C	\square	\square				▶ _		2				-1	
	Pulsed neutron (CCS1, VW1, GM1)	a 👔	\square	R				} ⊞	¥ 🗄	i	i	1		-	
	Deep fluid sampling (VW1)	s/				3	3		3	5	3	<u></u>	5	5	7000
	Passive seismic monitoring (GM1)	c			4	3		2	3	1	1	1	- 1	4	
	Seismic/3D VSP imaging	S/		Time lapse pulse neutron log from Decatur project											
	Mechanical integrity (CCS1, VW1)	A													

Plains CO₂ Reduction Partnership (PCOR)

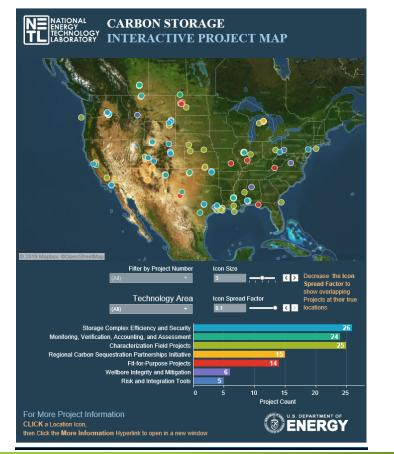
- Bell Creek CO₂-EOR site (Denbury Resources)
 - Southeast Montana; ~ 4 million metric tons stored during PCOR monitoring program
 - CO₂ piped in from gas processing plants in Wyoming
- MVA methods:
 - 4D surface seismic & VSPs;
 - Pulsed neutron logs;
 - Reservoir temperature/pressure;
 - Permanent downhole geophone array
 - Shallow and deep groundwater chemistry
 - Soil gas; InSAR

Southwest Regional Partnership on Carbon Sequestration (SWP)

• Tracer studies revealed preferential flow paths within reservoir (probable faults)

NATIONAL

IECHNOLOGY

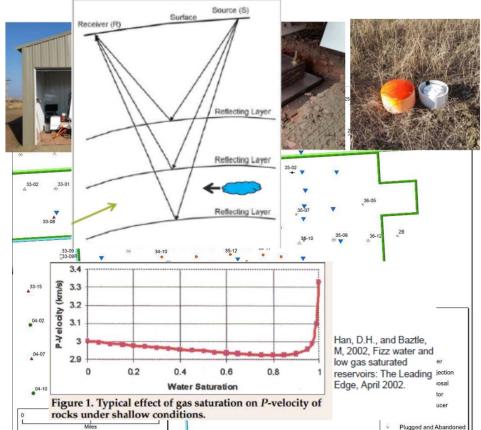

DOE R&D Projects: Advanced Sensors

- 6 Funding Opportunity Announcements (FOAs) in past 10 years

 - Award Recipient Cost Share $\geq 20\%$
 - -30 projects on advanced sensors & systems
 - -5 Active projects

ENERGY

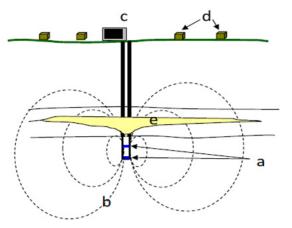
- New FOA: DE-FOA0001998:
 - o "Transformational Sensing Systems For Monitoring the Deep Subsurface"
 - o Applications Received: June 21, 2019
 - o Selections expected: Sept. 2019



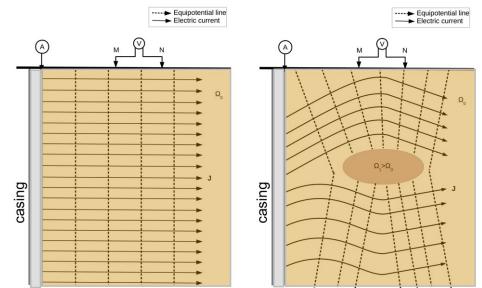
Plume Detection: Automated, Semi-permanent seismic

FE0012665 (EERC)

- Single, stationary seismic source and sparse array of semi-permanent geophones operated remotely via Internet
- "Shots" fired and data collected at frequent intervals (e.g., weekly @ 50 shots/session)
- Plume arrival indicated by change in Pwave
- Tested at PCOR Bell Creek EOR site



Plume Detection: Electrical Methods

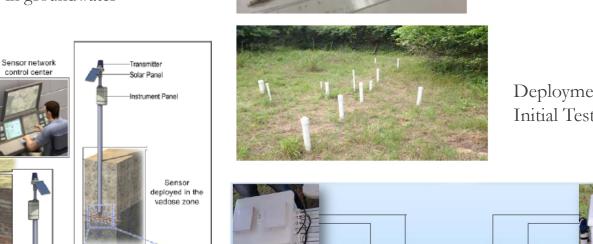


FE0012266 (Multi Phase Technologies, LLC):

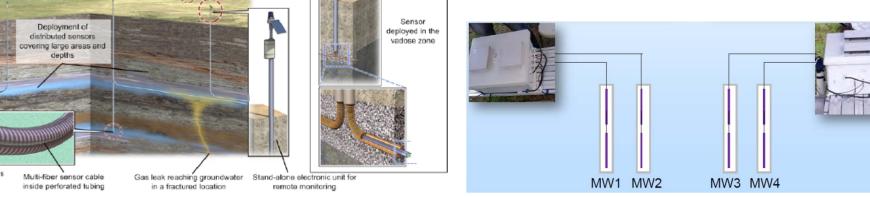
- Deep, Controlled-Source Electromagnetic CSEM) System: (a)borehole electrodes; (b) electric field/current flow lines; (c) transmitted/current source (d) mobile surface electric and magnetic field receivers
- Tested at Ketzin, Germany

FE0028320 (Colorado School of Mines):

- Charged wellbore casing controlled source electromagnetics (CWC-CSEM)
- Testing at Bell Creek (PCOR) CO₂-EOR site



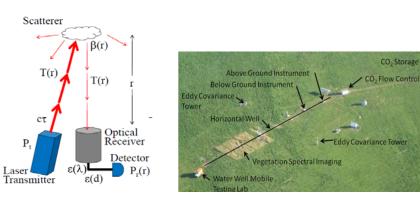
Assurance Monitoring (Shallow Groundwater): **Distributed fiberoptic sensors**


FE0012706 (Intelligent Optical Systems, Inc.): Distributed fiber optics sensors for in-situ, real-time monitoring of geochemical parameters in groundwater

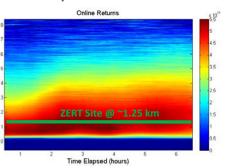
Injection site

Deployment and Initial Testing

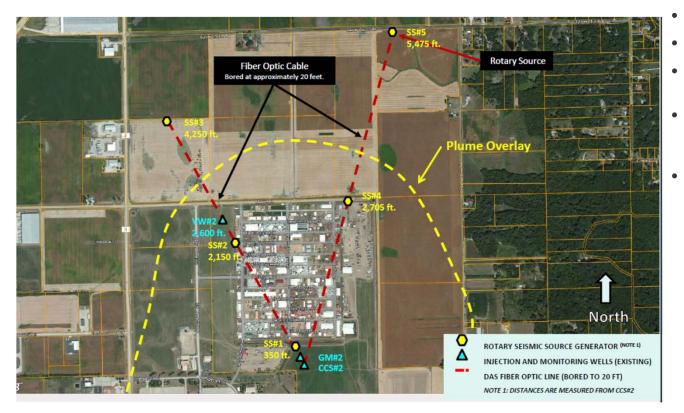
Sensor Unit Fabrication



Fiber optic sensors


Assurance Monitoring (Atmospheric): Optical Sensors

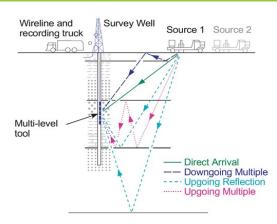

FE00101156 (Montana State University): Deployment of CO2-DIAL at ZERT facility

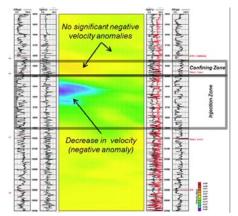

FE0012574 (Exelis, Inc.): Deployment of GreenLITE system at IBDP

Intelligent Monitoring Systems for Carbon Storage

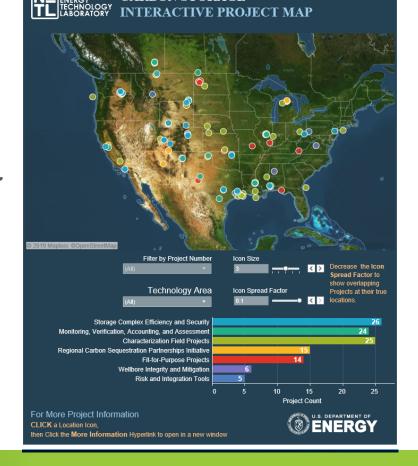
FE0026517 (Archer Daniels Midland): Continuous Active Seismic Source Monitoring (CASSM)

- Tested at ADM Decatur site, ICCS Project
- 5 Permanent, continuous seismic sources
- Fiberoptic DAS ~ 20 ft below ground in horizontal boreholes
- Data processed immediately to update reservoir model and create daily image of reservoir conditions
- Potentially quicker leak detection; less need for external seismic




Summary

- Objectives of Sensor Deployment:
 - Location of CO₂ plume/pressure front
 - Location of potential leakage pathways
 - Potential for induced seismicity
 - Assurance (leak detection)
- Benefits:
 - Commercial technologies sometimes available
 - Ensures reservoir storage containment effectiveness
 - Ensures groundwater and ecosystems remain protected.
- Challenges
 - Time and cost constraints
 - Signal processing and resolution
 - Currently no "gold standard" for verification
 - Multiple methods employed to improve confidence
- New sensors, techniques, and adaptations of existing technology are being developed
- Goal: integrate into Intelligent Monitoring Systems



For More Information

NETL Carbon Storage Project Portfolio https://www.netl.doe. gov/coal/carbonstorage/project-

portfolio

CARBON STORAGE

Program Contacts

National Energy Technology Laboratory

Traci D. Rodosta

Technology Manager, Carbon Storage 304-285-1345 *Traci.Rodosta@netl.doe.gov*

DOE Office of Fossil Energy

Darin Damiani

Program Manager, Carbon Storage and Sequestration 202-287-5282 Darin.Damiani@hq.doe.gov

