New Amine-Based Membranes for Post- and Pre-Combustion CO₂ Capture

Yang Han, Witopo Salim, Kai Chen and <u>W.S. Winston Ho</u>

William G. Lowrie Department of Chemical & Biomolecular Engineering Department of Materials Science and Engineering The Ohio State University, Columbus, Ohio, USA

Carbon Management Technology Conference Houston, TX, July 15 – 18, 2019

Outline

- Post-Combustion CO₂ Capture
 - Flue Gas in Coal- and/or Natural Gas-fired Power Plants

- Pre-Combustion CO₂ Capture
 - Coal- and/or Natural Gas-derived Syngas
 - Integrated Gasification Combined Cycle (IGCC)

Post-Combustion CO₂ Capture Introduction

- Coal-fired power plants
 - 40% of global CO₂ emission
 - Remain as major energy supply
- Membranes for CO₂ capture from flue gas
 - System compactness
 - Energy efficiency
 - Operational simplicity
 - Kinetic ability to overcome thermodynamic solubility limitation

CO₂ Capture from Flue Gas

- Flue Gas
 - Low pressure: 1 atm
 - Low CO₂ concentration: ~ 6 14%
- Low Driving Force
- Single-Stage Membrane Process
 Cannot Achieve DOE Targets
 - 90% capture with \geq 95% CO₂ concentration
 - \leq \$40/tonne CO₂ captured (in 2007 dollar)

Amine-Containing Polymer Membrane Structure

Simplicity of Membrane for Low Cost

Amine layer

Porous PES or PSf

Non-woven fabric

Amine Polymer Layer Contains Mobile and Fixed Carriers: Facilitated Transport

Amine-Containing Carriers

Fixed-Site Carrier

7

Mobile Carriers

High CO₂ Permeability/Selectivity Achieved

Han and Ho, Chin. J. Chem. Eng., doi:10.1016/j.cjche.2018.07.010 (2018)

Membrane Scale-up: Continuous Rollto-Roll Fabrication Machine at OSU

Composite Membrane Synthesized Selective Amine Polymer Layer on PES Support

Selective layer = 165 nm

Spiral-Wound Module Fabrication

Element Rolling Machine

Spiral-Wound Membrane Element

Membrane Module

Feed Outlet

Vacuum Permeate

Salim et al., JMS, 556, 126 (2018)

Feed Inlet

Scale-up of SW Modules

Good SW Module Stability Obtained

Good SW Module Stability at NCCC

Process Proposed for CO₂ Capture from Flue Gas in Coal-Fired Power Plants

- Retentate Recycle No Air Sweep Needed
 - No need to modify combustion air system of existing power plant
 - Capital cost of retrofitting the existing ductwork is avoided
 - Avoiding reduced O₂ content encountered in CO₂ laden air
 - Boiler efficiency is not affected
- Proposed Membrane Process
 - Does not require cryogenic distillation (compared to competition) 15

SO₂ Polishing & Membrane Process

Absorption into 20 wt% NaOH Solution

- Polishing step based on NETL baseline document
 - Estimated to be ~ \$4.3/tonne CO₂ (in 2007 \$, 6.5% COE increase)
- Non-plugging, low-differential-pressure, spray baffle scrubber

Techno-Economic Calculations for Flue Gas (In 2011 dollar)

- Basis: Membrane Results at 67°C
 - 1911 GPU & 256 Selectivity for 1% CO₂ concentration feed gas
 - 1450 GPU & 185 Selectivity for 20% CO₂ conc. feed gas
 - Include Membrane Module Installation Cost and 20% Process Contingency
 - In 2011 dollar: NETL Case 12 of Updated Costs (June 2011 Basis) for Selected Bituminous Baseline Cases

Calculated Cost Results

- 490.6 tonne/h of CO₂ captured from flue gas
- \$378 million bare equipment cost
 Membrane 45%, blowers and vacuum pumps 45%, others 10%
- 3.72 ¢/kWh (2.81 ¢/kWh capital cost, 0.40 ¢/kWh fixed cost, 0.51 ¢/kWh variable cost)
 - ightarrow COE = 8.09 ¢/kWh for 550 MW supercritical pulverized coal power plant
- \$41.7/tonne capture cost (\$37.2/MWh × 550 MW/(490.6 tonne/h))
- 46.0% Increase in COE (3.72/8.09 = 46.0%)

Lower Capture Cost for 70% CO₂ Recovery

Pre-Combustion CO₂ Capture: Proposed Process

 Proposed membrane process does not require significant syngas cooling (compared to competition)

Effect of CO₂ Permeance on Cost of Electricity Increase

Effect of H₂S/CO₂ Selectivity on H₂S Concentration in Retentate

Summary

- Post-Combustion CO₂ Capture from Flue Gas
 - Composite membranes synthesized in lab
 - + 1450 GPU with 185 selectivity at 67°C
 - Membrane scaled up successfully
 - Membrane modules fabricated & scaled up successfully
 - Modules tested at NCCC performed similarly to those in OSU lab
 - + Good module stability demonstrated with actual flue gas
 - Scale-up membrane / modules promising for meeting
 DOE cost target of \$40/tonne CO₂ (in 2007 \$) for 2025
- Pre-Combustion CO₂ Capture from Syngas
 - Composite membranes synthesized in lab
 - CO_2 capture process proposed for 107°C and 31.7 bar
 - 6 ppm H₂S in H₂ product achievable
 - TEA shows 15.66% increase in COE

Acknowledgments

José FigueroaDavid LangDean BellRobert LambrechtTony WuMatt Usher– Strong Efforts & Helpful Inputs for CO2-Sel. Membranes

Luca Ansoloni Yuanx Zi Tong Varun Lin Zhao Yanan – CO₂-Selective Membranes

Yuanxin Chen Varun Vakharia Yanan Zhao Kartik Ramasubramanian Dongzhu Wu

Norman N. Li Richard Song

– Nanoporous Membrane Support

BASF in Wyandotte, MI – Free PES Samples Kuraray America Inc. in Houston, TX – Free PVA Samples Purolite Corp., Bala Cynwyd, PA – Free Ion-Exchange Resin Samples Acknowledgments for Financial Support

- U.S. Department of Energy
 - DE-FE0026919
 - DE-FE0031635

- Ohio Development Services Agency
 - OER-CDO-D-15-09

Decreasing Emissions Preserves Environment

