Packing Free Gas Absorption Columns for Amine Scrubbing of CO₂

Carbon Management Technology Conference 2019 July 17th, 2019

Ishan Fursule, Heather Nikolic, Kunlei Liu

Center for Applied Energy Research
University of Kentucky,
Lexington, KY

University of Kentucky Center for Applied Energy Research

Creating Technology for Tomorrow's Energy

www.caer.uky.edu

Introduction

Post Combustion

Technologies

- Chemical Absorption
- Membrane (Gas Phase Separation)
- Cryogenic... etc

Research Area

- Solvent
- Process Technologies
- Energy Integration

FOR GAS ABSORPTION

Limitations

- High Capital Cost (65% of CC cost)
- Energy Intensive
- Construction time
- High Pressure Drop
- Foaming of Solvent

Gas

Alternative Approach

Low Pressure Drop – Less *energy consumption*

High Surface Area – High gas to liquid mass transfer area

Low Film Thickness – Lower *diffusion resistance*

Froth structure

Rate of mass transfer = $K \times a \times (Concentration \ difference)$

Reactor Type	Specific Interfacial Area (m²/m³)
Packed Column	10-1700
Froth Column*	1105-3220

Goal Summary

Shorter Column

Lower Capital Cost

Less Construction Cost

Packed with Froth

Lower Pressure Drop

Unstable Froth

High Mass Transfer Area and Diffusivity

How?

Unstable/Controlled Froth

- Froth Formation
- Froth Dispersion

Processes

- Coarsening
- Coalescence
- Drainage

Solvent Properties

- Surface Tension
- Bulk/Dynamic Viscosity
- Surface Visco-elastic Properties

Stage 1

Identify the Solvent/Solution
Properties Favorable for Frothing
(Low Gas Velocity Frothing Studies)

Stage 2

Design the Column for Carbon Capture Process (High Gas Velocity Application)

Amine based solution and additives

Solvent

- University of Kentucky Advanced Solvent (UKAS)Rich condition (C/N > 0.4)

 - Lean condition (C/N <0.2)

Additives

- Surfactants
- Corrosion Inhibitor²
- Degradation Products¹

Surfactants

- Non-ionic (Tween 20)
- Cationic (Cetrimonium Bromide/CTAB)
- Anionic (Sodium Dodecyl Sulphate/SDS)

International Journal of Greenhouse Gas Control 5 (2011) 381-386

Critical Micelle Concentration

Surface Tension and Viscosity of UKAS

10

CMTC July 15-18, 2019

Froth Formation Rate

Experimental Setup

Froth Dispersion Rate

 $G_V = 0.05 \text{ m/s},$ L = 50 ml

Fast Dispersion

Uniform Bubble Size

Lean – 0.1 wt% - Tween 20

Rich - 0.1 wt% - Tween 20

Lean - 0.01 wt% - SDS

Froth Dispersion Rate

 $G_V = 0.05 \text{ m/s},$ L = 50 ml

Slow Dispersion

Non-uniform Bubble Size

Lean - 0.01 wt% - CTAB

CMTC July 15-18, 2019

Froth Dispersion Rate

 $G_V = 0.05 \text{ m/s},$ L = 50 ml

Very Slow Dispersion

Non-uniform Bubble Size and Plugs of Froth

Lean - 0.1 wt% - CTAB

CMTC July 15-18, 2019

Conclusions

- Experiments were performed to understand the solvent properties favorable for unstable and controlled frothing
- UK Advanced Solvent has slow rate of froth dispersion even at lower ionic surfactant concentration due to its higher viscosity
- Ionic surfactants form very stable froth whereas non-ionic has high dispersion rate
- Higher concentration of surfactant forms smaller bubbles
- The overall rate of dispersion does not completely depend on either just surfactant or just solvent. But it is the combination of surfactant, solvent and CO₂ loading.
- The concentration of surfactant below and above CMC both formed froth but the stability depends on the other factors like the type of surfactant.

Acknowledgement

- Kunlei Liu and Heather Nikolic
- Power Generation Research Group
- Carbon Management Research Group (CMRG)

Froth Rheology

Structured Structured and unstable and rising

Plug flow

Froth Dispersion — Mechanisms of Froth Breakdown

Coarsening/Ostwald ripening – Transfer of gas from smaller bubbles to the bigger bubbles

Coalescence—Fusion of bubbles after rupture of continuous film phase between them

Drainage – Draining off of the liquid in the froth/bubble film due to gravity creating wet and dry froth

Dry Froth

Wet Froth

Experimental set up

- Ross Miles method
- Waring Blender method
- Bikerman method
- Foam scan method
- Custom

Gas Distribution

