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Need global strategy for carbon management

Annual CO: emissions by world region
in Data

Annual carbon dioxide (CO:) emissions measured in billion tonnes (Gt) per year

ssat - >36 Gt CO, emitted globally per year —
e ...Need to remove 10-20 Gt CO, per year

Asia and Pacific

(other)
...5.5 Gt of C per year
25 Gt _
China
20 Gt
15 Gt Af.rica
—— Middle East
B —— Americas (other)
10 Gt
United States
5Gt —— Europe (other)
0 Gt
1751 1800 1850 1200 1250 2015
Source: Carbon Dioxide Information Analysis Center (CDIAC) CCBY

Note: Emissions data have been converted from units of carbon to carbon dioxide (CO2) using a conversion factor of 3.67. Regions denoted "other"” are
given as regional totals minus emissions from the EU-28, USA, China and India. Here, we have rephrased the general term "bunker (fuels)” as
"international aviation and maritime transport” for clarity.
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Current models of carbon management

* CCS

— 22,000 Gt potential capacity
(North America)

— Limited to ~1,000 Mt CO,/year
— Risk of CO, migration and leakage

Shell, CARBON CAPTURE AND STORAGE, https://reports.shell.com/sustainability-report/2016/energy-
transition/our-work-to-address-climate-change/carbon-capture-and-storage.html

8
% 000
e “Recycled” CO, Bo B — atmosphere \
— Potentially profitable for businesses 1B < ﬁa
Product COZ captire S
— Need for co-feed molecules a = ¥
s |
— Displaces only ~30% need === Pt
e Gasoline in the US would only 7 ~
account for 7% of need ' ’H‘f HO A
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Thermodynamic, Kinetic, and Political Barriers

Energy for separation/concentration

0.11 kWh per kg | Conventional CO, Capture
CO, for optimum | SOt st of e power L OB T G S0 1 L0

° e ¢ | . Power output decreases 20% = Pollutants incraase 25%
Am ine un |t «  Cost of electricity increases 80% (Ibs/MWh)
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Thermodynamic, Kinetic, and Political Barriers

=/ /\/\)\/\/\
687 =
>390 kJ/mol CO, to _ %— Y AN
\Y
overcome rxn energy S1CH, Q Y /L[J\
AG? 229 '4 fOI’ C6H14
>415 kJ/mol average C-H  xj/mol | H;0 o
BDE of methane \)I\OH -295
HCOOH -361
H,CCOOH -382
co,
394
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Thermodynamic, Kinetic, and Political Barriers
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>390 kJ/mol CO, to
overcome rxn energy

>415 kJ/mol average C-H
BDE of methane
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Can we develop additional processes with less
severe science and engineering hurdles?
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A synthetic analogue of natural process

* CO, fixed within stable mineral
carbonates, mimicking the
natural process of biogenic
abiogenic limestone formation
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A synthetic analogue of natural process
68 =~

* CO, fixed within stable mi
carbonates, mimicking th
natural process of biogen

abiogenic limestone form AG? _

k] /mol

* Thermodynamically
favorable
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A synthetic analogue of natural process

* CO, fixed within stable mi
carbonates, mimicking th
natural process of biogen

abiogenic limestone form AG? _

k] /mol

* Thermodynamically
favorable

e Utilizes abundant and/or
waste sources of Ca

Seawater, Desalination Brines,

~_

Industrial Wastewater,
Produced Water

=/ /\/\)\/\/\
68 2~ =«
NS
51CH, Q o 20
- -4 for C¢H,,
H,0 0
\)I\OH'Z%
HCOOH -361
H,CCOOH -382
CO,
394
ca2+

(aq)
-1130 CaCO,
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A synthetic analogue of natural process
68 =~

* CO, fixed within stable mi
carbonates, mimicking th
natural process of biogen

abiogenic limestone form AG? _

k] /mol

* Thermodynamically
favorable

e Utilizes abundant and/or
waste sources of Ca

 Economically competitive
and environmentally
“friendlier” process
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Precipitated Calcium Carbonate Processes

Current %2 .21 ton

Process
Quarried Crushed g ??5103
Limestone # ($340)
1.12 ton ($13.70)
Residue
Water 0.09 ton

6.0 ton ($15.0)

@ for heating
3750 MJ 130 kg Coal ($7.80)

Y ; ' Fossil Fuel
Electricity
($25) ' 277 kWh '
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Precipitated Calcium Carbonate Processes

Current “ 021 ton
Process
Quarried Crushed L5 ??;03
Limestone R ($340)
1.12 ton ($13.70) )
Residue
Water 0.09 ton

6.0 ton ($15.0)

-~ Fossil Fuel
@for heating

3750 MJ 130 kg Coal ($7.80)

S Electr|C|ty
$25) Y 277 kWh

Alternative o “ Y Noamisios Reduced
0.4 ton ($0 icci
Process on (50) ¥COY / energy/em|SS|ons
CaCO,
iti 11
M It Igates Wastewater ($(:)320)
waste 40,000 ton | ca
. ($ 0 ) \I:;; - :-’fj
handling costs 339 KWH @
($30)
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2500 Potential $10 Billion «o ) Processes
. mcrease in market Value 500 2
g : =
= 400 =
2 1500 B . = CaCo
= N B 300 5 Tton
3 200 % —
=] = Residue
oo 50.0 10.0 @ 0.09 ton
=
0.0 0.0
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 g Coal ($7.80)
N Year
/ mmm Conventional Production | S. Potential Production Red uced
Market Value = Potential Market Value SV/emiSSionS
caco, ¢ ¥
H'H ol 1t _
M It Igates Wastewater ($§20) e
waste 40,000 ton @ A
. ($0)
handling costs 332 KWh @
($30)
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Different thermodynamic barrier
e Alkalinity must be supplied to

-2 K : 1 : | 7
continuously precipitate CaCO, o gl fcod [HCp;] ’
5 \
* Inducing alkalinity with £ T
consumable bases (e.g., NaOH) g 5 h
is expensive and energy 3 74
intensive 8 — Ly
0 2 4 ¢ 6
Carbonated water Ph Precipitation
pH =5 pH > 8

Ca?(,q) + COyq + HO() >
CaCO3(s) + 2H+(aq)

Alternative Processes for Precipitated Calcium Carbonate Production



Samueli
UCLA Chemical & Biomolecular Engineering

Different thermodynamic barrier

e Alkalinity must be supplied to
continuously precipitate CaCO,

* Inducing alkalinity with
consumable bases (e.g., NaOH)
is expensive and energy
intensive

log Activity (mol/kgw)

* lon-exchange materials may be
an attractive, reusable
alternative

0 10° 2x10°3x10°4x10° 5x10°
H*/Na* exchange (mol/kgw)
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Proposed process integrating ion-exchange

* |lon exchange reactor may be

constructed in the form of u , .
packed columns (grain size = a
considerations) - I % ?l e
* Acidity is induced by CO, ZLD System
dissolution, ion-exchange “
prOdUCES a CO32-'riCh Solution ................. PrOducedwater(Caz+) ......................................
* Reaction of COz*-rich solution ~ co%uen = o cysiallzation |
. . : Wast
with Ca?*-rich produced water (—Iﬂ LA catment Hj
. 1 | JRedctor] —
forms calcite :| Exchange | | | .
. | Process ; - i Regeneration
* |lon-exchanger regenerated using : ! ks
I i

_ I Recycled
Ca-depleted produced water . T Produced Water § nacigme

: CO,Rich Flue Gas 4= === = = = = = 2
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Proposed process integrating ion-exchange

* |lon exchange reactor may be

constructed in the form of —

packed columns (grain size P | J | !

considerations) ‘ c_l % g gsifiifia
* Acidity is induced by CO, ZLD System

dissolution, ion-exchange )

produces 3 CO32'-rich solution ................. producedwater((;az+) .......................................
* Reaction of CO,%-rich solution | C0 sglutor — g o crysialieaton

with Ca%*-rich produced water (—Iﬁ AN e

i 11| IRedctor] —1—>

What ion exchange materials deliver desirable
exchange capacity, dynamics, and stability ?
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Regenerable ion-exchangers

* Natural materials such as lon exchange resins
phyllosilicates (layered Nl NS
. s
silicates/clays) and zeolites, and N —— o

synthetic resins can be used as
ion-exchangers

 Compare based on capacity for
and kinetics of ion exchange and
for stability/extent of
regeneration

Zeolites

/\

\l.IZ// /Z %‘

V//// %Qu
\ ,,/////////,,
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Na*/H* exchange using resins, clays, zeolites

* Batch experiments: bubble CO, TR Y AN K N SN E_—_—
into DI water until pH 4, then
add ion exchanger and observe
pH increase

e Two zeolites and two resins
meet the “minimum”
IEX Material

requirement of pH > 8 e TP-260  -e Zeolite 13X

1 @ 200C - DIA

- TP-207  -® SP-112

-e- Zeolite 4AA © DOWC

0 1 I 1 I I I 1 I I
00 02 04 06 08 1.0

Solid Load (kg/kgw)
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Na*/H* exchange using resins, clays, zeolites

* Batch experiments: bubble CO, -
into DI water until pH 4, then

. 12
add ion exchanger and observe
pH increase 90
80 - --m--207
1 --m--13X .
i %70- - -l--4A et
- : (< 1 --=--260 ...
e Two zeolites and two resins 560{ --a-200C -
meet the “minimum” £ 504 2
. o 1 e
requirement of pH > 8 g 401 - =
o
30 s . ..--1
it I
§20-. ’.!' w
* Na* release appears to be 10 ;{,:j _______ e e eeanans .
ode . O OO OO
unbalanced but follows the o " " o "
same trend as pH increase Solid load (kg/kgw)

Alternative Processes for Precipitated Calcium Carbonate Production



/oWy Samuell

Chemical & Biomolecular Engineering

Exchange Isotherms point to the resins and 4A

TP-207
5 ® TP-260
©0.20 - A AA V), 4 - -
S v 13X
= m 200C
-"50.15- g
(4]
o
(14
O
g_’ﬂ 10 - A ce |vy | 2
o
(4]
£I=
2
X0.05 - ]
o o ol o=
0.00 - ‘“ﬁ'vv u i

107" 10“' 109 108 107 10 10° 10* 103 1072
H* equilibrium concentration (mmmol/L)
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Dynamics of zeolites

14 T T ¥ T ¥ T ¥ T ¥ T ¥ 64
13 4 13X IEX Column Experiments 160
! 156
12 Exchanging H* with Na*in4A ] 52
1 ] —M- pH, 2 ml/min 148 s
| 1 g
10 - 144 <
| R 140 o
9 4 . ~m-E o 7 36 ‘E
8- -- .\- ] 32 ‘E
. B 128 8
7'. — 24 §
6- 120 &
. 116 Z
51 112
44 m 18
3 L] v L] v L] v L] v L] v L] v . 4
0 200 400 600 800 1000 1200

Bed volume (ml)

14 I I - I - I - I - I - I - I
A 4A IEX Column Experiments 148
13 1 144
12 Ja0
T Exchanging H* with Na* in 4A
11'_ ~H - pH, 2 mi/min . 36
10-. CLET T 132
9 4 -‘.I\-\ ] 28
1 |
8- g I\.\. 124
1 g 416
6 - 112
5+ X
] ' ‘ E.::'D O, "E| o -a } _. 8
44 . Sodium release ‘o .. 14
l 0-.pg- -0
34— 0
0

200 400 600 800 1000 1200 1400 1600
Bed Volume (ml)

No diffusion restrictions on exchange equilibrium

Microporous structure may slow uptake kinetics (larger

process vessel)
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Dynamics of resins

14 T v T v T v T v T v T v 70
13 4 TP 207 IEX Column Experiments 65
1 Exchanging H* with Na* ] g0
12 1 —H - pH, 2 mi/min ;
_—m_oH 10 mlmin 455 3
11-. . 50 é
10 -+ 445 5
9 Jao0 £
' 135 &
8 4 ] c
] 430 &
T--f-m - - - --125-§
] . S
6- {20 ©
5- 115
4 4 y 10
1 415
3

B 500 1000 1500 2000 2500 3000
Bed volume (ml)

14 T T T T T T T 70
13 4 TP 260 IEX Column Experiments 165
12 T b
l Exchanging H” with Na® {4 5§
—B_ oLl 10 ml/min L
11 ' 4.—:" 4 i 50
10 ~ 445
i {40
T 135
8 - ]
1 430
___Z-. __________________ ._____._\_. 4 25
6 - 120
1 Sodium release . 1
5 - . 115
L O- L
4 - [ ] s * O- - ' 10
; : 15
3 I - L) L)
H 500 1000 1500 2000

Bed volume (ml)

* Achieve equilibrium exchange capacities; Faster uptake kinetics

e Still observe a pH increase from 4 to 7

e Shiftin breakthrough not proportional with contact time
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Precipitation using column effluent

* CaCO; precipitation (XRD) 16000 4t
following column ion 14000 - l'i - 207
. ] A . \ A ] |
exchange (using 0.10 M CaCl,)  rzo00- P e e ) e .
10000 _M_
-g 8000- "
> 6000—-
T JL -\ A M e S
4000 —
2000-
0 - - JLI - A J\I ) : J_Ll i
20 30 40 50 60

Diffraction angle (20, degrees)
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Precipitation using column effluent

* CaCO; precipitation (XRD)
following column ion
exchange (using 0.10 M CacCl,)

=N
o

Final pH after exchange
- ---Max pH 11.5

. —pH 113

—pH11.1

| —pH 9.6

. — pH 8.6

w
o

1L 1 1
W

-
o
| "
\

Theoretical CaCO, (s) (mmol/kgw)
S
L

o

1 I L I T I Ll
40 60 80 100
Ca (mmol/kgw)

o
N
o
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Precipitation using column effluent

* CaCO; precipitation (XRD)
following column ion
exchange (using 0.10 M CacCl,)

40 :
 Achieve (close to) the | €acCo, Precipitated
. . 3 ® Experimental
thermodynamlc MaxXimum 230 e Calculation e®
- = ®
amount of CaCOj; (using 0 oy 260
PHREEQC minteq database) £ 204
N
o 4A @
. . O — 13X
* Small reaction time length or S 10 ° o
loss of CO, may explain ®
differences in calculated and 0 ! ' !
8 9 10 11

experimental CaCO; (s) values pH
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Precipitation using column effluent

Known zeolites and resins can achieve
thermodynamic maxima for overall process

T
I !

e Achieve (close to) the
thermodynamic maximum

heoretical Cad

CaCO, Precipitated

10 - 4
/ﬁ ® Experimental
1/ = )
230 e Calculation

—m-ﬂ'errl—mm-rse.. T

Regeneration? Higher than expected Na* during
batch exchange? Post-breakthrough pH = 7?

@) L J
loss of CO, may explain 1

-

differences in calculated and 0 L
experimental CaCO; (s) values
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FTIR characterization of organic ion exchange resins

e TP-260: Loss of amino methyl
phosphonic acid after exposure
to waterat pH=11.8

O 1

2 [
H,N.__P-OH
" “OH

{— TP-260 pH 11.8

— TP-260
20 1 I 1 I

4000 3000 2000

1000

Wavenumber cm™!
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FTIR characterization of organic ion exchange resins

e TP-260: Loss of amino methyl
phosphonic acid after exposure

to water at pH =11.8 00— 1 1 .1
2 Q1 - -
|
_OH _ u
HaN__ P 90
3 OH i 5C-H i
=
c e 80— =
- _ 40_H 65 (o) B
* 200C: Loss of sulfonic acid 20— =0
functional group |— 200c i
o=3=6o — 200C pH 10
| 60 T I T I T [ T
OH
4 4000 3000 2000 1000

Wavenumber cm-!
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FTIR characterization of organic ion exchange resins

e TP-260: Loss of amino methyl
phosphonic acid after exposure

to water at pH =11.8 00— 1 1 .1
2 Q | -
|
H,N.__P-OH 90 - -
° \3/ \OH i 5C-H "
[ c ] ;l_g 80 — —

Leaching of active sites on resin materials introduces
Na* into solution and can titrate protons

OH | ' | ' | ' |
4 4000 3000 2000 1000
Wavenumber cm™!

Alternative Processes for Precipitated Calcium Carbonate Production



UCLA Samueli

Chemical & Biomolecular Engineering

Conclusions

* Production of precipitated calcium carbonate using industrial waste
brines presents substantial reductions in GHG emissions

* Various pathways have been identified, processes need to be
characterized and controlled

* lon-exchange produces a CO5*-rich solution, Reaction of CO;%*-rich
solution with Ca%*-rich produced water forms calcite

* Resins exhibit higher “capacity” and better kinetics, but are unstable

in water at low pH
N
a8 LD
Q“"‘?%"“%_j}
COo;" — 15 [

3\ F i
N’

11 N\

lon
Exchange

e?
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