

Fine Calcium Carbonate Production by CO₂ Mineralization of Industrial Waste Brines

Dante Simonetti¹, Erika Callagon La Plante², Gaurav Sant², Bu Wang³, Abdulaziz Alturki¹, Steven Bustillos¹

¹Department of Chemical and Biomolecular Engineering, UCLA ²Department of Civil and Environmental Engineering, UCLA ³Department of Civil and Environmental Engineering, University of Wisconsin-Madison

Funding Acknowledgment: DOE Office of Fossil Energy, NETL UCLA Institute for Carbon Management

2019 Carbon Management Technology Conference

Carbon Utilization

Need global strategy for carbon management

Note: Emissions data have been converted from units of carbon to carbon dioxide (CO2) using a conversion factor of 3.67. Regions denoted "other" are given as regional totals minus emissions from the EU-28, USA, China and India. Here, we have rephrased the general term "bunker (fuels)" as "international aviation and maritime transport" for clarity.

Current models of carbon management

• CCS

- 22,000 Gt potential capacity (North America)
- Limited to ~1,000 Mt CO₂/year
- Risk of CO₂ migration and leakage

Shell, CARBON CAPTURE AND STORAGE, https://reports.shell.com/sustainability-report/2016/energy-transition/our-work-to-address-climate-change/carbon-capture-and-storage.html

- "Recycled" CO₂
 - Potentially profitable for businesses
 - Need for co-feed molecules
 - Displaces only ~30% need
 - Gasoline in the US would only account for 7% of need

500 MW Coal Plant

Thermodynamic, Kinetic, and Political Barriers

0.11 kWh per kg CO₂ for optimum Amine unit

Amine absorber & regeneration plant

Thermodynamic, Kinetic, and Political Barriers

>390 kJ/mol CO₂ to overcome rxn energy

>415 kJ/mol average C-H BDE of methane

Thermodynamic, Kinetic, and Political Barriers

>390 kJ/mol CO₂ to overcome rxn energy

>415 kJ/mol average C-H BDE of methane

Can we develop additional processes with less severe science and engineering hurdles?

A synthetic analogue of natural process

CO₂ fixed within stable mineral carbonates, mimicking the natural process of biogenic abiogenic limestone formation

A synthetic analogue of natural process

- CO₂ fixed within stable mi carbonates, mimicking the natural process of biogen abiogenic limestone form
- Thermodynamically favorable

A synthetic analogue of natural process

- CO₂ fixed within stable mi carbonates, mimicking the natural process of biogen abiogenic limestone form
- Thermodynamically favorable
- Utilizes abundant and/or waste sources of Ca

Seawater, Desalination Brines, Industrial Wastewater, Produced Water

A synthetic analogue of natural process

- CO₂ fixed within stable mi carbonates, mimicking the natural process of biogen abiogenic limestone form 4
- Thermodynamically favorable
- Utilizes abundant and/or waste sources of Ca
- Economically competitive and environmentally "friendlier" process

Precipitated Calcium Carbonate Processes

Precipitated Calcium Carbonate Processes

UCLA

Different thermodynamic barrier

- Alkalinity must be supplied to continuously precipitate CaCO₃
- Inducing alkalinity with consumable bases (e.g., NaOH) is expensive and energy intensive

Different thermodynamic barrier

- Alkalinity must be supplied to continuously precipitate CaCO₃
- Inducing alkalinity with consumable bases (e.g., NaOH) is expensive and energy intensive
- Ion-exchange materials may be an attractive, reusable alternative

Proposed process integrating ion-exchange

- Ion exchange reactor may be constructed in the form of packed columns (grain size considerations)
- Acidity is induced by CO₂ dissolution, ion-exchange produces a CO₃²⁻-rich solution
- Reaction of CO₃²⁻-rich solution with Ca²⁺-rich produced water forms calcite
- Ion-exchanger regenerated using Ca-depleted produced water

Proposed process integrating ion-exchange

- Ion exchange reactor may be constructed in the form of packed columns (grain size considerations)
- Acidity is induced by CO₂ dissolution, ion-exchange produces a CO₃²⁻-rich solution
- Reaction of CO₃²⁻-rich solution with Ca²⁺-rich produced water

What ion exchange materials deliver desirable exchange capacity, dynamics, and stability ?

Regenerable ion-exchangers

- Natural materials such as phyllosilicates (layered silicates/clays) and zeolites, and synthetic resins can be used as ion-exchangers
- Compare based on capacity for and kinetics of ion exchange and for stability/extent of regeneration

Na⁺/H⁺ exchange using resins, clays, zeolites

- Batch experiments: bubble CO₂ into DI water until pH 4, then add ion exchanger and observe pH increase
- Two zeolites and two resins meet the "minimum" requirement of pH > 8

Na⁺/H⁺ exchange using resins, clays, zeolites

- Batch experiments: bubble CO₂ into DI water until pH 4, then add ion exchanger and observe pH increase
- Two zeolites and two resins meet the "minimum" requirement of pH > 8
- Na⁺ release appears to be unbalanced but follows the same trend as pH increase

Exchange Isotherms point to the resins and 4A

Dynamics of zeolites

- No diffusion restrictions on exchange equilibrium
- Microporous structure may slow uptake kinetics (larger process vessel)

Dynamics of resins

- Achieve equilibrium exchange capacities; Faster uptake kinetics
- Still observe a pH increase from 4 to 7
- Shift in breakthrough not proportional with contact time

 CaCO₃ precipitation (XRD) following column ion exchange (using 0.10 M CaCl₂)

 CaCO₃ precipitation (XRD) following column ion exchange (using 0.10 M CaCl₂)

- CaCO₃ precipitation (XRD) following column ion exchange (using 0.10 M CaCl₂)
- Achieve (close to) the thermodynamic maximum amount of CaCO₃ (using PHREEQC minteq database)
- Small reaction time length or loss of CO₂ may explain differences in calculated and experimental CaCO₃ (s) values

Known zeolites and resins can achieve thermodynamic maxima for overall process

 Achieve (close to) the thermodynamic maximum

Regeneration? Higher than expected Na⁺ during batch exchange? Post-breakthrough pH = 7?

loss of CO_2 may explain differences in calculated and experimental $CaCO_3$ (s) values

FTIR characterization of organic ion exchange resins

 TP-260: Loss of amino methyl phosphonic acid after exposure to water at pH = 11.8

FTIR characterization of organic ion exchange resins

 TP-260: Loss of amino methyl phosphonic acid after exposure to water at pH = 11.8

FTIR characterization of organic ion exchange resins

 TP-260: Loss of amino methyl phosphonic acid after exposure to water at pH = 11.8

Leaching of active sites on resin materials introduces Na⁺ into solution and can titrate protons

Conclusions

- Production of precipitated calcium carbonate using industrial waste brines presents substantial reductions in GHG emissions
- Various pathways have been identified, processes need to be characterized and controlled
- Ion-exchange produces a CO₃²⁻-rich solution, Reaction of CO₃²⁻-rich solution with Ca²⁺-rich produced water forms calcite
- Resins exhibit higher "capacity" and better kinetics, but are unstable in water at low pH

Acknowledgements

- UCLA Institute for Carbon Management
- Sant and Simonetti groups at UCLA; Wang group UW-Madison
- DOE/NETL for funding

Questions?

Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number DE-FE0031705."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."