Fine Calcium Carbonate Production by CO$_2$ Mineralization of Industrial Waste Brines

Dante Simonetti1, Erika Callagon La Plante2, Gaurav Sant2, Bu Wang3, Abdulaziz Alturki1, Steven Bustillos1

1Department of Chemical and Biomolecular Engineering, UCLA
2Department of Civil and Environmental Engineering, UCLA
3Department of Civil and Environmental Engineering, University of Wisconsin-Madison

Funding Acknowledgment:
DOE Office of Fossil Energy, NETL
UCLA Institute for Carbon Management

2019 Carbon Management Technology Conference
Carbon Utilization
Need global strategy for carbon management

>36 Gt CO₂ emitted globally per year

...Need to remove 10-20 Gt CO₂ per year

...5.5 Gt of C per year
Current models of carbon management

- **CCS**
 - 22,000 Gt potential capacity (North America)
 - Limited to ~1,000 Mt CO₂/year
 - Risk of CO₂ migration and leakage

- "Recycled" CO₂
 - Potentially profitable for businesses
 - Need for co-feed molecules
 - Displaces only ~30% need
 - Gasoline in the US would only account for 7% of need
Thermodynamic, Kinetic, and Political Barriers

0.11 kWh per kg CO₂ for optimum Amine unit
>390 kJ/mol CO$_2$ to overcome rxn energy

>415 kJ/mol average C-H BDE of methane
Thermodynamic, Kinetic, and Political Barriers

>390 kJ/mol CO$_2$ to overcome rxn energy

>415 kJ/mol average C-H BDE of methane

Can we develop additional processes with less severe science and engineering hurdles?
Alternative Processes for Precipitated Calcium Carbonate Production

A synthetic analogue of natural process

- CO₂ fixed within stable mineral carbonates, mimicking the natural process of biogenic abiogenic limestone formation
A synthetic analogue of natural process

- CO₂ fixed within stable mineral carbonates, mimicking the natural process of biogenic abiogenic limestone formation
- Thermodynamically favorable
A synthetic analogue of natural process

- CO_2 fixed within stable mineral carbonates, mimicking the natural process of biogenic/abiogenic limestone formation.
- Thermodynamically favorable.
- Utilizes abundant and/or waste sources of Ca.

Seawater, Desalination Brines, Industrial Wastewater, Produced Water.

\[\Delta G_f^0 \text{ (kJ/mol)} \]

- -394 for CO_2
- -295 for HCOOH
- -361 for H_3CCOOH
- -382 for H_2O
- -51 for CH_4
- -4 for C_6H_{14}

$\text{Ca}^{2+} (\text{aq})$
A synthetic analogue of natural process

- CO₂ fixed within stable mineral carbonates, mimicking the natural process of biogenic or abiogenic limestone formation.
- Thermodynamically favorable.
- Utilizes abundant and/or waste sources of Ca.
- Economically competitive and environmentally "friendlier" process.
Precipitated Calcium Carbonate Processes

Current Process

- Quarried Crushed Limestone: 1.12 ton ($13.70)
- Water: 6.0 ton ($15.0)
- CO₂: 0.21 ton
- Fossil Fuel for heating: 3750 MJ, 130 kg Coal ($7.80)
- Electricity: 277 kWh ($25)
- CaCO₃: 1 ton ($340)
- Residue: 0.09 ton ($13.70)
- Production Cost: $15.00
Precipitated Calcium Carbonate Processes

Current Process
- Quarried Crushed Limestone: 1.12 ton ($13.70)
- Water: 6.0 ton ($15.0)
- CO\(_2\): 0.21 ton
- Fossil Fuel for heating: 3750 MJ 130 kg Coal ($7.80)

CO\(_2\) Mitigation
- CO\(_2\): 0.4 ton ($0)
- Reduced energy/emissions
- Wastewater: 40,000 ton ($0)

Alternative Process
- CaCO\(_3\): 1 ton ($340)
- Residue: 0.09 ton
- Electricity: 332 kWh ($30)
- No emissions

Mitigates waste handling costs
Alternative Processes for Precipitated Calcium Carbonate Production

Current Process

- 0.21 ton CO$_2$
- Quarried Crushed Limestone
- Water
- Fossil Fuel for heating
- No emissions
- 1 ton CaCO$_3$
- 0.4 ton CO$_2$ ($0)
- 40,000 ton ($0)
- 332 kWh
- Residue 0.09 ton
- Wastewater 1.12 ton ($13.70)
- 6.0 ton ($15.0)
- Electricity 277 kWh, 3750 MJ
- 130 kg Coal ($7.80) ($25)

Alternative Process

- Mitigates waste handling costs
- Reduced energy/emissions
- Potential $10 Billion increase in market Value
- CaCO$_3$ 1 ton ($340)
- Residue 0.09 ton
- Wastewater 40,000 ton ($0)
- Energy 332 kWh ($30)
Different thermodynamic barrier

- Alkalinity must be supplied to continuously precipitate CaCO$_3$

- Inducing alkalinity with consumable bases (e.g., NaOH) is expensive and energy intensive

\[
\text{Ca}^{2+} \text{(aq)} + \text{CO}_2 \text{(g)} + \text{H}_2\text{O} \text{(l)} \rightarrow \text{CaCO}_3 \text{(s)} + 2\text{H}^+ \text{(aq)}
\]
Alternative Processes for Precipitated Calcium Carbonate Production

Different thermodynamic barrier

- Alkalinity must be supplied to continuously precipitate CaCO$_3$

- Inducing alkalinity with consumable bases (e.g., NaOH) is expensive and energy intensive

- Ion-exchange materials may be an attractive, reusable alternative
Proposed process integrating ion-exchange

- Ion exchange reactor may be constructed in the form of packed columns (grain size considerations)
- Acidity is induced by CO₂ dissolution, ion-exchange produces a CO₃²⁻-rich solution
- Reaction of CO₃²⁻-rich solution with Ca²⁺-rich produced water forms calcite
- Ion-exchanger regenerated using Ca-depleted produced water
Proposed process integrating ion-exchange

- Ion exchange reactor may be constructed in the form of packed columns (grain size considerations)
- Acidity is induced by CO$_2$ dissolution, ion-exchange produces a CO$_3^{2-}$-rich solution
- Reaction of CO$_3^{2-}$-rich solution with Ca$^{2+}$-rich produced water

What ion exchange materials deliver desirable exchange capacity, dynamics, and stability?
Regenerable ion-exchangers

- Natural materials such as phyllosilicates (layered silicates/clays) and zeolites, and synthetic resins can be used as ion-exchangers
- Compare based on capacity for and kinetics of ion exchange and for stability/extent of regeneration
Na⁺/H⁺ exchange using resins, clays, zeolites

- Batch experiments: bubble CO₂ into DI water until pH 4, then add ion exchanger and observe pH increase
- Two zeolites and two resins meet the “minimum” requirement of pH > 8
Na⁺/H⁺ exchange using resins, clays, zeolites

- Batch experiments: bubble CO₂ into DI water until pH 4, then add ion exchanger and observe pH increase.

- Two zeolites and two resins meet the “minimum” requirement of pH > 8.

- Na⁺ release appears to be unbalanced but follows the same trend as pH increase.
Exchange Isotherms point to the resins and 4A
Dynamics of zeolites

- No diffusion restrictions on exchange equilibrium
- Microporous structure may slow uptake kinetics (larger process vessel)
• Achieve equilibrium exchange capacities; Faster uptake kinetics
• Still observe a pH increase from 4 to 7
• Shift in breakthrough not proportional with contact time
Precipitation using column effluent

- CaCO$_3$ precipitation (XRD) following column ion exchange (using 0.10 M CaCl$_2$)
Precipitation using column effluent

- CaCO$_3$ precipitation (XRD) following column ion exchange (using 0.10 M CaCl$_2$)
Precipitation using column effluent

- **CaCO$_3$ precipitation (XRD) following column ion exchange (using 0.10 M CaCl$_2$)**

- Achieve (close to) the thermodynamic maximum amount of CaCO$_3$ (using PHREEQC minteq database)

- Small reaction time length or loss of CO$_2$ may explain differences in calculated and experimental CaCO$_3$ (s) values
Precipitation using column effluent

Known zeolites and resins can achieve thermodynamic maxima for overall process

- Achieve (close to) the thermodynamic maximum

Regeneration? Higher than expected Na\(^+\) during batch exchange? Post-breakthrough pH = 7?

Small reaction time length or loss of CO\(_2\) may explain differences in calculated and experimental CaCO\(_3\) (s) values
FTIR characterization of organic ion exchange resins

- TP-260: Loss of amino methyl phosphonic acid after exposure to water at pH = 11.8

![FTIR spectrum](image)
FTIR characterization of organic ion exchange resins

- TP-260: Loss of amino methyl phosphonic acid after exposure to water at pH = 11.8

$$\text{H}_2\text{N}-\overset{2}{\text{O}}-\text{P}^\text{1}-\overset{3}{\text{OH}}$$

- 200C: Loss of sulfonic acid functional group

$$\text{O=S=O}$$

$$\text{O}$$
FTIR characterization of organic ion exchange resins

- TP-260: Loss of amino methyl phosphonic acid after exposure to water at pH = 11.8

Leaching of active sites on resin materials introduces Na\(^+\) into solution and can titrate protons
Conclusions

• Production of precipitated calcium carbonate using industrial waste brines presents substantial reductions in GHG emissions

• Various pathways have been identified, processes need to be characterized and controlled

• Ion-exchange produces a CO_3^{2-}-rich solution, Reaction of CO_3^{2-}-rich solution with Ca^{2+}-rich produced water forms calcite

• Resins exhibit higher “capacity” and better kinetics, but are unstable in water at low pH
Acknowledgements

- UCLA Institute for Carbon Management
- Sant and Simonetti groups at UCLA; Wang group UW-Madison
- DOE/NETL for funding

Questions?
Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number DE-FE0031705."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."