Calcium Looping Implementation at Heavy Fuel Oil-Fired Power Plants: The Effect of Calcination/Carbonation Cycles on SO₂ & CO₂ Co-Capture By Two Structurally Distinct Limestones

Sally L. Homsy & Robert W. Dibble

حامعة الملك عبدالله

King Abdullah University of

Science and Technology

للعلوم والتقنية

Heavy fuel oil (HFO) is a low cost residual petroleum distillation byproduct

Saudi Arabia is 8th in emissions (4th per capita)

Calcium Looping is a 2nd generation post combustion CO₂ capture technology

- Add on: Installed lacksquaredownstream of a power plant
- Utilizes a dual fluidized lacksquarebed system to circulate solid sorbent between capture and regeneration

plant

Calcium Looping is a 2^{nd} generation post combustion CO_2 capture technology

Key process design parameters

At typical optimal operation:

Examine the effect of Saudi limestone activity and $CaSO_4$ accumulation on CO_2 and SO_2 co-capture from synthetic HFO flue gas

Novelty:

- 1. Two structurally distinct limestone, from each of the two regions where Saudi limestone is mined: Further insight into the relationship between sorbent morphology and co-capture
- 2. Use of a fluidized bed system to study co-capture of SO₂ and CO₂ for limestone with different activities: Data is relevant for modeling a dual fluidized bed system

Saudi Arabian limestone

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Arabian Platform "Riyadh" Limestone:

Red Sea Coastal Plain "Saabar" Limestone:

SEM: Saudi Arabian limestone

Riyadh Limestone:

Saabar Limestone:

XRF: $\sim 53.2\% \text{ CaO}, 2.0\% \text{ SiO}_2$ $\sim 0.7\% \text{ MgO}, 0.55\% \text{ Al}_2\text{O}_3, 0.5\% \text{ Fe}_2\text{O}_3$

~53.6% CaO, 2.1% SiO₂ ~ 1.0% MgO, 0.23% Al₂O₃, 0.38% Fe₂O₃

Similar CaO purity & impurity composition

Experimental Design: To obtain sorbent with different activities and CaSO₄ content

Experimental Design: To obtain sorbent with different activities and CaSO₄ content

Experimental Design:

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Results: Visualizing the impact on capture rate relative to CaO Consumption

جامعة الملك عبدالله

King Abdullah University of

Science and Technology

للعلوم والتقنية

X1 Results: Riyadh sorbent exhibited greater overall conversion superior "fast" capture rate

S.L. Homsy, R.W. Dibble – CMTC, 2019

SEM: Riyadh sorbent has more structural defects & enhanced surface diffusion

X1 Riyadh Sorbent:

X1 Saabar Sorbent:

SET 1 Results: Both sorbents exhibit reduced CO₂ capture capacity and efficiency due to cycling

SET 2 Results: Both sorbents exhibit reduced CO₂ capture capacity and efficiency due to cycling

Results: Cycling with SO₂ affects Riyadh and Saabar sorbent carbonation differently

Results: Cycling with SO₂ affects Riyadh and Saabar sorbent sulfation differently

Riyadh Limestone:

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Saabar Limestone:

SEM-EDS: Saabar monomineralic CaO phases more susceptible to sintering

X1: Riyadh Sorbent:

X1: Saabar Sorbent:

Sem-EDS: Saabar sorbent cycled without SO₂ has smaller grain size

X3 Riyadh Sorbent:

X3 Saabar Sorbent:

Sem-EDS: Sorbent cycled with SO₂ has similar grain size

X3-S Riyadh Sorbent

X3-S Saabar Sorbent

Mercury Porosymetry & N₂ Adsorption:

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

"Mild" sulfation of Saabar limestone reduces the monomineralic nature of this sorbent & increases the Tamman temperature of the sorbent thereby reducing susceptibility to heat induced sintering

Sem-EDS: Saabar grain size disruption leads to structural defects

Saabar X3 Recarbonated

Saabar X3-S Recarbonated

Results: Sorbents cycled in SO₂ exhibit similar CO₂ capture performance

Big Picture: Influence on key process design parameters

Option 1: High make-up ratio High X_{max, ave} Riyadh > Sabaar

Option 2: High looping ratio High bed inventory Low X_{max, ave} **Riyadh** ≈ Sabaar

Conclusions:

- 1. This data, along with limestone deactivation rates, can be used to model a CaL system: reasonable limits on operating parameters for CaL implementation at HFO-fired power plants
- 2. Distribution of impurities in limestone plays an important role
- 3. Limestone with non-homogeneously distributed impurities is more susceptible to sintering & less susceptible to deactivation when cycled in flue gas with SO₂

Progress:

- 1. Assessing limestone deactivation rates due to cycling at different looping rates in relevant gas atmospheres
- 2. Modeling CaL system using collected data

THANK YOU!

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

