# We Center for Applied Energy Research

# Cost Analysis of the UKy-CAER Transformative CO<sub>2</sub> Capture System

#### **Heather Nikolic**

University of Kentucky Center for Applied Energy Research Lexington, KY http://www.caer.uky.edu/powergen/home.shtml

2019 Carbon Management Technology Conference

# Outline

- Reference Cases (RCs)
- UKy-CAER CCS Technology
- UKy-CAER TEAs and Cost Estimations
- Uky-CAER CCS Cost Estimation Compared to RC B12B

#### **Take Away Points**

- 1. The UKy-CAER CCS has advantages, regardless of the Reference Case used for comparison.
- Enhanced absorber mass transfer, high absorber inlet CO<sub>2</sub> concentration, leaner solution feed to the absorber, split rich stripper feed and smaller columns all contribute to lower capital costs.
- 3. The estimated cost of  $CO_2$  capture with the UKy-CAER CCS is \$41.40/tonne  $CO_2$  captured (excluding T&S), compared to the RC B12B cost of \$58/tonne of  $CO_2$ .

#### **Reference Cases**

| Set | Reference<br>Case | Year<br>Published         | Steam Cycle   | CCS Solvent       | Used for Comparison<br>by UKy-CAER |
|-----|-------------------|---------------------------|---------------|-------------------|------------------------------------|
| 1   | RC 9              | 2007                      | Subcritical   | -                 | 2012 TEA                           |
| 1   | RC 10             | 2007                      | Subcritical   | MEA               | (Small Pilot CCS Project)          |
| 2   | RC 11             | 2007                      | Supercritical | -                 | 2016 TEA and 2017 Update           |
| Z   | RC 12             | 2007                      | Supercritical | MEA               | (Large Pilot CCS Projects)         |
| 2   | RC B12A           | 2015                      | Supercritical | -                 | Today                              |
| 3   | RC B12B           | RC B12B 2015 Supercritica |               | Second Generation | iuudy                              |







#### **RC Comparison - CCS**



#### RC 12 is a 1<sup>st</sup> Generation Technology using MEA.

Includes:

- Flue Gas Pretreatment
- Solvent Recovery
- Amine Filtering
- Solvent Regeneration = 1530 BTU/lb CO<sub>2</sub> Captured (3.56 GJ/tonne)



# RC B12B is an Advanced, 2<sup>nd</sup> Generation Technology.

Includes:

- Flue Gas Pretreatment
- Solvent Recovery
- Absorber Intercooler
- Amine Purification
- Pressurized Stripping
- Solvent Regeneration = 1064 BTU/lb CO<sub>2</sub> Captured (2.47 GJ/tonne)

### **RC Comparison - Configuration**

| Supercritical PC Plant Study Configuration Matrix |                    |                              |                              |                                    |  |  |  |  |  |
|---------------------------------------------------|--------------------|------------------------------|------------------------------|------------------------------------|--|--|--|--|--|
|                                                   | RC 11              | RC12                         | RCB12A                       | RCB12B                             |  |  |  |  |  |
| Steam Cycle, MPa/°C/°C                            | 24.1/593/593       | 24.1/593/593                 | 24.1/593/593                 | 24.1/593/593                       |  |  |  |  |  |
| Coal                                              | Illinois No. 6     | Illinois No. 6               | Illinois No. 6               | Illinois No. 6                     |  |  |  |  |  |
| Condenser Pressure (mm Hg)                        | 50.8               | 50.8                         | 50.8                         | 50.8                               |  |  |  |  |  |
| Boiler Efficiency, HHV%                           | 88 *               | 88                           | 89 *                         | 89                                 |  |  |  |  |  |
| Cooling Water to Condenser, °C                    | 16                 | 16                           | 16                           | 16                                 |  |  |  |  |  |
| Cooling Water from Condenser, °C                  | 27                 | 27                           | 27                           | 27                                 |  |  |  |  |  |
| Stack Temperature, °C                             | 57                 | 32                           | 56                           | 42                                 |  |  |  |  |  |
| SO <sub>2</sub> Control                           | Wet Limestone      | Wet Limestone Forced         | Wet Limestone Forced         | Wet Limestone Forced               |  |  |  |  |  |
|                                                   | Forced Oxidation   | Oxidation                    | Oxidation                    | Oxidation                          |  |  |  |  |  |
| FGD Efficiency, %                                 | 98                 | 98                           | <u>98</u>                    | <u>98</u>                          |  |  |  |  |  |
| NOx Control                                       | LNB with OFA and   | LNB with OFA and             | and Polishing *              | LNB with OFA, SCR<br>and Polishing |  |  |  |  |  |
|                                                   | 0011               |                              | Scrubber                     | Scrubber                           |  |  |  |  |  |
| SCR Efficiency, %                                 | 86                 | 86                           | 83                           | 85                                 |  |  |  |  |  |
| Ammonia Slip (End of Catalyst Life),<br>ppmv      | 2                  | 2                            | 2                            | 2                                  |  |  |  |  |  |
| Particulate Control                               | Fabric Filter      | Fabric Filter                | Fabric Filter                | Fabric Filter                      |  |  |  |  |  |
| Fabric Filter Efficiency, %                       | 99.8               | 99.8                         | 99.9                         | 99.9                               |  |  |  |  |  |
| Ash Distribution, Fly/Bottom                      | 80%/20%            | 80%/20%                      | 80%/20%                      | 80%/20%                            |  |  |  |  |  |
| SO <sub>3</sub> Control                           | DSI                | DSI                          | DSI                          | DSI                                |  |  |  |  |  |
| Mercury Control                                   | Co-benefit Capture | Co-benefit Capture           | Co-benefit Capture and ACI * | Co-benefit Capture<br>and ACI      |  |  |  |  |  |
| $CO_2$ Control                                    | NA                 | * Econamine                  | NA                           | * Cansolv                          |  |  |  |  |  |
| Overall CO <sub>2</sub> Capture                   | NA                 | 90.2                         | NA                           | 90%                                |  |  |  |  |  |
| CO <sub>2</sub> Sequestration                     | NA                 | Off-site Saline<br>Formation | NA                           | Off-site Saline<br>Formation       |  |  |  |  |  |

# caer.uky.edu

#### **RC Comparison - Power**

| Plant Power Summary, kWe                    |       |                |        |                |  |  |  |  |
|---------------------------------------------|-------|----------------|--------|----------------|--|--|--|--|
|                                             | RC 11 | RC12           | RCB12A | RCB12B         |  |  |  |  |
| Coal Handling and Conveying                 | 440   | * 510          | 430    | * 480          |  |  |  |  |
| Pulverizer                                  | 2780  | * 3850         | 2690   | * 3370         |  |  |  |  |
| Sorbent Handling & Reagent Preparation      | 890   | * 1250         | 850    | * 1070         |  |  |  |  |
| Ash Handling                                | 530   | 740            | 620    | 780            |  |  |  |  |
| Primary Air Fans                            | 1300  | * 1800         | 1330   | * 1670         |  |  |  |  |
| Forced Draft Fans                           | 1660  | * 2300         | 1700   | * 2130         |  |  |  |  |
| Induced Draft Fans                          | 7050  | <b>*</b> 11120 | 6660   | * 8350         |  |  |  |  |
| SCR                                         | 50    | 70             | 40     | 60             |  |  |  |  |
| Activated Carbon Injection                  | 0     | 0              | 22     | 27             |  |  |  |  |
| Dry Sorbent Injection                       | 0     | 0              | 86     | 108            |  |  |  |  |
| Baghouse                                    | 70    | 100            | 90     | 110            |  |  |  |  |
| Wet FGD                                     | 2970  | 4110           | 2830   | 3550           |  |  |  |  |
| CO <sub>2</sub> Capture/Removal Auxiliaries | 0     | <b>*</b> 20600 | 0      | <b>*</b> 16000 |  |  |  |  |
| CO <sub>2</sub> Compression                 | 0     | <b>*</b> 44890 | 0      | <b>*</b> 35690 |  |  |  |  |
| Miscellaneous BOP                           | 2000  | 2000           | 2000   | 2000           |  |  |  |  |
| Steam Turbine Auxiliaries                   | 400   | 400            | 400    | 400            |  |  |  |  |
| Condensate Pumps                            | 800   | * 560          | 800    | * 640          |  |  |  |  |
| Circulating Water Pumps                     | 4730  | <b>*</b> 10100 | 4520   | * 7750         |  |  |  |  |
| Ground Water Pumps                          | 480   | <b>*</b> 910   | 460    | * 710          |  |  |  |  |
| Cooling Tower Fans                          | 2440  | 5230           | 2340   | 4010           |  |  |  |  |
| Transformaer Losses                         | 1820  | 2290           | 1820   | 2380           |  |  |  |  |
| TOTAL                                       | 30410 | *112830        | 29688  | * 91285        |  |  |  |  |

#### **RC Comparison – Equipment Cost**

|        |                                       | RC 12 | R        | C B12B | Percent<br>Difference |                |
|--------|---------------------------------------|-------|----------|--------|-----------------------|----------------|
| (      | 550                                   |       |          | 550    | * 0%                  |                |
|        | Plant Efficiency, % (HHV basis)       |       | 28.4%    |        | 32.5%                 | <b>*</b> 14%   |
|        | Net Plant Heat Rate, BTU/kWh HHV      |       | 12,002   | 1      | 10,508                | -12%           |
|        | Capital Costs (2011\$/KW)             | \$    | 3,563    | \$     | 3,526                 | -1%            |
|        | Equipment Costs (\$x1)                | 000,  | 2011\$)  |        |                       |                |
|        | Item/Description                      |       |          |        |                       |                |
| 1      | COAL & SORBENT HANDLING               | \$    | 56,286   | \$     | 52,286                | <b>*</b> -7%   |
| 2      | COAL & SORBENT PREP & FEED            | \$    | 27,055   | \$     | 24,983                | <b>*</b> -8%   |
| 3      | FEEDWATER & MISC. BOP SYSTEMS         | \$    | 123,565  | \$     | 112,150               | <b>*</b> -9%   |
| 4      | PC BOILER                             | \$    | 437,215  | \$     | 400,793               | <b>*</b> -8% 🗲 |
| 5      | FLUE GAS CLEANUP                      | \$    | 196,119  | \$     | 197,475               | * 1%           |
| 5B     | CO <sub>2</sub> REMOVAL & COMPRESSION | \$    | 593,497  | \$     | 632,139               | * 7%           |
| 5B.1   | CO <sub>2</sub> Removal System        | \$    | 505,963  | \$     | 533,757               | * 5%           |
| 5B.2   | CO <sub>2</sub> Compression & Drying  | \$    | 87,534   | \$     | 98,381                | <b>*</b> 12%   |
| 6      | COMBUSTION TURBINE/ACCESSORIES        | \$    | -        | \$     | -                     |                |
| 7      | HRSG, DUCTING & STACK                 | \$    | 45,092   | \$     | 45,027                | 0%             |
| 8      | STEAM TURBINE GENERATOR               | \$    | 166,965  | \$     | 178,176               | * 7%           |
| 9      | COOLING WATER SYSTEM                  | \$    | 73,311   | \$     | 62,254                | <b>*</b> -15%  |
| 10     | ASH/SPENT SORBENT HANDLING SYSTEM     | \$    | 18,252   | \$     | 19,028                | * 4%           |
| 11     | ACCESSORY ELECTRIC PLANT              | \$    | 100,255  | \$     | 93,584                | <b>*</b> -7%   |
| 12     | INSTRUMENTATION & CONTROL             | \$    | 31,053   | \$     | 31,654                | * 2%           |
| 13     | IMPROVEMENTS TO SITE                  | \$    | 18,332   | \$     | 18,063                | * -1%          |
| 14     | BUILDINGS & STRUCTURES                | \$    | 72,402   | \$     | 71,531                | <b>*</b> -1%   |
| TOTALS |                                       | \$ 1  | ,959,399 | \$ 1   | ,939,143              | * -1%          |

#### COE of RC B12B Compared to RC 12



<u>RC B12B Advantages</u>
<u>over RC 12:</u>
1) Second Generation Solvent
2) Pressurized Solvent Regeneration

#### 2019 Carbon Management Technology Conference

# 👯 Center for Applied Energy Research

#### **UKy-CAER CCS Costs Reported**

March December 2016 TEA 2017 2019 2012 TEA 2018 Performed Performed Estimates Estimates Estimates by EPRI and Based on Based on by EPRI and Based on WP WP 2016 TEA 2016 TEA 2016 TEA **By EPRI** Compared to RC 12 Compared to RC B12B Compared to RC B12B Compared to RC 10 Compared to RC 12 Constant Coal Feed Rate Constant Net Power Output **Constant Coal Feed Rate Constant Coal Feed Rate Constant Coal Feed Rate** UKy-CAER CCS Included: **UKy-CAER CCS Included: UKy-CAER CCS Included:** UKy-CAER CCS Included: **UKy-CAER CCS Included:** Advanced Solvent Advanced Solvent Advanced Solvent Advanced Solvent Advanced Solvent Two Stage Stripping Two Stage Stripping **Two Stage Stripping** Two Stage Stripping Two Stage Stripping Heat Integration Heat Integration Heat Integration Heat Integration Heat Integration **Reduced Column Sizes Reduced Column Sizes Reduced Column Sizes** Tall Columns Tall Columns Split Rich Stripper Feed Split Rich Stripper Feed Split Rich Stripper Feed **Exergy Loss Minimization Exergy Loss Minimization** Exergy Loss Minimization

#### 2019 Carbon Management Technology Conference

# **UKy-CAER Approach to CCS**



- Smaller column heights
- Discretized packing
- Absorber T profile and flooding control
- Absorber pump around
- Pressurized primary stripper
- Split rich primary stripper feed to reduce the H<sub>2</sub>O/CO<sub>2</sub> ratio in the stripper outlet and supply secondary vapor source for CO<sub>2</sub> stripping
- Exergy loss minimization in steam extraction

## **UKy-CAER CCS**



#### Includes:

- Flue Gas Pretreatment
- Solvent Recovery
- Absorber Intercooling
- Pressurized Primary Stripping
- Heat Recovery Loop, Piping and Pump
- Secondary Stripper, Overhead Condenser, Blower, Lean Amine Pump
- Secondary Stripper Gas Outlet Recycle Line Back to Boiler
- Solvent Regeneration = 900 BTU/lb CO<sub>2</sub> Captured (2.10 GJ/tonne)

caer.uky.edu

#### 0.7 MWe Small Pilot CCS Output: Solvent Regeneration Energy

| Performance Compared to 30 wt% MEA      | Advanced Solvent A        | Advanced Solvent B         | Advanced Solvent C         |
|-----------------------------------------|---------------------------|----------------------------|----------------------------|
| Energy Penalty                          | 27% savings               | ~30% savings               | 20-25% savings             |
| Solvent Circulation Rate                | ~35-45% reduction         | ~40% reduction             | ~30% reduction             |
| Cyclic Capacity                         | ~1.5X                     | ~2X                        | ~1.5X                      |
| Viscosity                               | 2.5 – 3X                  | 3 – 3.5X                   | ~1.5X                      |
| Surface Tension                         | ~0.6X                     | -1.1X                      | ~1.0X                      |
| Degradation Products                    | Low                       | Low                        | Low                        |
| Solvent Regeneration Energy Measured at | 1022 Btu/lb $CO_2$ on 0.7 | 1200-1400 BTU/lb $CO_2$ on | 1070-1600 BTU/lb $CO_2$ on |
|                                         | MWe Small Pilot, 61% of   | 0.7 MMWe, 52% of MEA       | 0.7 MMWe, 68% of MEA       |
| UNY-CALL COS                            | MEA on 0.1 MWth Bench     | on 0.1 MWth Bench          | on 0.1 MWth Bench          |

#### 0.7 MWe Small Pilot CCS Output: Column Height Reduction



|                             | 2016 TEA                                                | Updated UKy-CAER<br>Equipment Size                    |                                                      |                                     |
|-----------------------------|---------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------|
| Scale                       | Normalized<br>550 MWe                                   | Normalized<br>550 MWe                                 | ~170 TPD                                             | 550 MWe                             |
| Absorber                    | 41′ dia.,<br>138′ T/T,<br>118′ pkg ht,<br>ΔΡ = 1.79 psi | 41′ dia.,<br>80′ T/T,<br>60′ pkg ht,<br>ΔΡ = 1.06 psi | 23′ dia.,<br>110′ T/T,<br>60′ pkg ht                 | 48′ dia.,<br>68′ T/T,<br>40′ pkg ht |
| Primary<br>Stripper         | 19′ dia.,<br>110′ T/T,<br>95′ pkg ht,<br>ΔP = 7 psi     | 19' dia.,<br>60' T/T,<br>45' pkg ht,<br>ΔP = 4.2 psi  | 14' dia.,<br>56' T/T,<br>26' pkg ht                  | 27′ dia.,<br>38′ T/T,<br>33′ pkg ht |
| Secondary<br>Stripper       | 21' dia.,<br>92' T/T,<br>72' pkg ht,<br>ΔP = 12.6 psi   | 21′ dia.,<br>55′ T/T,<br>35′ pkg ht,<br>ΔP = 7.5 psi  |                                                      |                                     |
| Direct<br>Contact<br>Cooler | 47′ dia.,<br>110′ T/T,<br>ΔΡ = 1.7 psi                  | 47′ dia.,<br>65′ T/T,<br>ΔΡ = 1.0 psi                 | 23' dia.,<br>49' T/T,<br>16.5' pkg ht,<br>ΔP = 1 psi |                                     |

Statistical analysis of small pilot CCS data show that the absorber is tall enough to approach equilibrium rich loading.

#### **Updated Equip. Cost Estimates**

|                                       | RC B12B             | UKy-CAER<br>CCS     | Percent<br>Difference | Constant Net Power<br>Output,       |
|---------------------------------------|---------------------|---------------------|-----------------------|-------------------------------------|
| Commercial Scale Plant Size (MW, net) | 550                 | 550                 | 0%                    | Higher Thermal                      |
| Plant Efficiency, % (HHV basis)       | 32.5%               | 34.0%               | 5%                    | Enciency                            |
| Total Plant Cos                       | sts (x 1000 2011    | \$)                 |                       | Lower: Smaller                      |
| Item/Description                      |                     |                     |                       | power plant size                    |
| COAL & SORBENT HANDLING               | \$ <b>*</b> 52,286  | \$ <b>*</b> 50,810  | -3%                   | Higher: Equipment                   |
| COAL & SORBENT PREP & FEED            | \$ \star 24,983     | \$ \star 24,242     | -3%                   | minimization strategy               |
| FEEDWATER & MISC. BOP SYSTEMS         | \$ * 112,150        | \$ <b>*</b> 112,798 | 1%                    |                                     |
| PC BOILER                             | \$ \star 400,793    | \$ <b>*</b> 388,308 | -3%                   | Lower: higher inlet CO <sub>2</sub> |
| FLUE GAS CLEANUP                      | \$ <b>*</b> 197,475 | \$ <b>*</b> 190,974 | -3%                   | concentration,<br>enhanced absorber |
| CO <sub>2</sub> REMOVAL & COMPRESSION | \$ \star 632,139    | \$ \star 362,742    | -43% 🔶                | mass transfer, split rich           |
| CO <sub>2</sub> Removal System        | \$ * 533,757        | \$ * 267,082        | -50% 🦯                | stripper feed,                      |
| CO <sub>2</sub> Compression & Drying  | \$ \star 98,381     | \$ * 95,659         | -3% 🖌                 | smaller columns                     |
| DUCTING & STACK                       | \$ * 45,027         | \$ * 44,664         | -1% 🕇                 |                                     |
| STEAM TURBINE GENERATOR               | \$ <b>*</b> 178,176 | \$ <b>*</b> 173,158 | -3% 🖌                 | Count the additional                |
| COOLING WATER SYSTEM                  | \$ * 62,254         | \$ * 61,210         | -2% 🔨                 | duct from secondary                 |
| ASH/SPENT SORBENT HANDLING SYSTEM     | \$ * 19,028         | \$ <b>*</b> 18,546  | -3%                   | stripper back to boiler             |
| ACCESSORY ELECTRIC PLANT              | \$ \star 93,584     | \$ * 90,164         | -4% 🖌                 | Lower: heat integration             |
| INSTRUMENTATION & CONTROL             | \$ \star 31,654     | \$ \star 31,244     | -1% 🔨                 | and small cooling tower<br>and fan  |
| IMPROVEMENTS TO SITE                  | \$ * 18,063         | \$ <b>*</b> 17,693  | -2%                   | Lower: Takes into                   |
| BUILDINGS & STRUCTURES                | \$ * 71,531         | \$ * 70,751         | -1%                   | account additional CCS              |
| TOTAL                                 | \$ 1,939,143        | \$ 1,637,302        | -16%                  | footprint                           |

# **CO<sub>2</sub> Removal System Equipment Cost**

From TEA Performed under DE-FE0026497 Equipment List with Columns Oversized

| Description                    | Quantity       | Equipment and<br>Materials Cost<br>(\$) |                |    | Equipment and<br>Materials Cost<br>(\$) |    |                | Labor Cost<br>(\$) | В | are Erect Cost<br>(\$) |
|--------------------------------|----------------|-----------------------------------------|----------------|----|-----------------------------------------|----|----------------|--------------------|---|------------------------|
| Pre-treatment Tower            | 2 ор           | \$                                      | 6,073,043.85   | \$ | 4,858,435.08                            | \$ | 10,931,478.93  |                    |   |                        |
| CO <sub>2</sub> Absorber       | 2 ор           | \$                                      | 48,583,511.59  | \$ | 32,389,007.72                           | \$ | 80,972,519.31  |                    |   |                        |
| Primary Stripper               | 2 ор           | \$                                      | 17,343,192.33  | \$ | 10,486,581.41                           | \$ | 27,829,773.74  |                    |   |                        |
| Reclaimer                      | 1 ор           | \$                                      | 1,648,333.33   | \$ | 1,318,666.67                            | \$ | 2,967,000.00   |                    |   |                        |
| Air Stripper                   | 2 ор           | \$                                      | 16,549,871.33  | \$ | 11,033,247.56                           | \$ | 27,583,118.89  |                    |   |                        |
| Reboiler                       | 2 ор           | \$                                      | 6,301,601.83   | \$ | 4,201,067.89                            | \$ | 10,502,669.72  |                    |   |                        |
| Lean/Rich Exchanger            | 2 ор           | \$                                      | 5,509,180.47   | \$ | 3,505,842.11                            | \$ | 9,015,022.58   |                    |   |                        |
| Recycle Air Cooler #1          | 2 ор           | \$                                      | 3,086,906.50   | \$ | 2,057,937.66                            | \$ | 5,144,844.16   |                    |   |                        |
| CO <sub>2</sub> Cond #3        | 2 ор           | \$                                      | 1,924,047.86   | \$ | 1,282,698.57                            | \$ | 3,206,746.43   |                    |   |                        |
| CO <sub>2</sub> Condenser #4   | 2 ор           | \$                                      | 202,942.55     | \$ | 135,295.03                              | \$ | 338,237.58     |                    |   |                        |
| Absorber Intercooler           | 2 ор           | \$                                      | 2,701,219.38   | \$ | 1,800,812.92                            | \$ | 4,502,032.29   |                    |   |                        |
| Lean Cooler                    | 2 ор           | \$                                      | 1,992,470.30   | \$ | 1,328,313.53                            | \$ | 3,320,783.83   |                    |   |                        |
| Recycle Air Cooler #2          | 2 ор           | \$                                      | 536,045.67     | \$ | 357,363.78                              | \$ | 893,409.45     |                    |   |                        |
| DCC Cooler                     | 1 ор           | \$                                      | 1,085,211.21   | \$ | 723,474.14                              | \$ | 1,808,685.35   |                    |   |                        |
| Lean Solution Pump             | 2 op & 2 spare | \$                                      | 13,693,978.90  | \$ | 13,693,978.90                           | \$ | 27,387,957.81  |                    |   |                        |
| Rich Solution Pump             | 2 op & 2 spare | \$                                      | 7,200,561.07   | \$ | 7,200,561.07                            | \$ | 14,401,122.13  |                    |   |                        |
| Primary Stripper Pump          | 2 op & 2 spare | \$                                      | 4,436,329.41   | \$ | 4,436,329.41                            | \$ | 8,872,658.83   |                    |   |                        |
| Intercooler Pump               | 2 op & 1 spare | \$                                      | 3,919,149.67   | \$ | 3,919,149.67                            | \$ | 7,838,299.34   |                    |   |                        |
| Solvent Make-up Pump           | 1 op & 1 spare | \$                                      | 173,600.00     | \$ | 173,600.00                              | \$ | 347,200.00     |                    |   |                        |
| DCC Pump                       | 1 op & 1 spare | \$                                      | 3,292,828.47   | \$ | 3,292,828.47                            | \$ | 6,585,656.95   |                    |   |                        |
| ID Fan                         | 2 ор           | \$                                      | 6,524,033.38   | \$ | 3,262,016.69                            | \$ | 9,786,050.07   |                    |   |                        |
| Air Stripper Blower            | 2 ор           | \$                                      | 1,069,765.75   | \$ | 534,882.87                              | \$ | 1,604,648.62   |                    |   |                        |
| Total                          |                |                                         | 153,847,824.84 | \$ | 111,992,091.17                          | \$ | 265,839,916.01 |                    |   |                        |
| Allowance for Interconnections |                |                                         | 13,122,379.48  | \$ | 6,674,403.11                            | \$ | 19,796,782.59  |                    |   |                        |
| Grand Total                    |                | \$                                      | 166,970,204.32 | \$ | 118,666,494.27                          | \$ | 285,636,698.60 |                    |   |                        |

Reduced Column Heights: Direct Contact Cooler: 110 to 65 ft. Absorber: 138 to 82 ft. Primary Stripper: 95 to 56 ft. Secondary Stripper: 92 to 55 ft.

#### The air stripper, blower, condenser and pump are only 23% of the bare erect cost which is ~\$40M.

## **5B. CO<sub>2</sub> Removal and Compression**

| Case 12                                                     |                                      |       |                |       |               |       |              |       |            |           |                |           |
|-------------------------------------------------------------|--------------------------------------|-------|----------------|-------|---------------|-------|--------------|-------|------------|-----------|----------------|-----------|
|                                                             |                                      |       |                | Eng   | 'g CM H.O. &  |       | Process      | I     | Project    | To        | tal Plant Cost |           |
|                                                             | Item/Description                     | Bare  | e Erected Cost |       | Fee           | Сс    | ontingencies | Con   | tingencies |           | (\$/1000)      |           |
| 5B.1                                                        | CO <sub>2</sub> Removal System       | \$    | 326,057        | \$    | 30,367        | \$    | 65,211       | \$    | 84,327     | \$        | 505,963        |           |
| 5B.2                                                        | CO <sub>2</sub> Compression & Drying | \$    | 66,717         | \$    | 6,228         | \$    | -            | \$    | 14,589     | \$        | 87,534         |           |
|                                                             | SUBTOTAL                             | \$    | 392,774        | \$    | 36,595        | \$    | 65,211       | \$    | 98,916     | \$        | 593,497        | 10%       |
|                                                             | UKy-CAER C                           | CS Co | ompared to R   | C 12, | Constant Coa  | al Fe | eed Rate     |       |            |           |                | Reduction |
|                                                             |                                      | Bare  | e Erected Cost | Eng   | g'g CM H.O. & |       | Process      |       | Project    | Tot       | al Plant Cost  | Due to    |
|                                                             | Item/Description                     |       | (\$)           |       | Fee           | С     | ontingencies | Cor   | tingencies |           | (\$/1000)      | Smaller   |
| 5B.1                                                        | CO <sub>2</sub> Removal System       | \$    | 201,906        | \$    | 17,364        | \$    | 34,930       | \$    | 45,227     | \$        | 299,426        | Amount of |
| 5B.2                                                        | CO <sub>2</sub> Compression & Drying | \$    | 56,586         | \$    | 5,286         | \$    | -            | \$    | 2,374      | \$        | 74,246         | $CO_2$    |
|                                                             | SUBTOTAL                             | \$    | 258,492        | \$    | 22,650        | \$    | 34,930       | \$    | 57,601     | \$        | 373,672        | Because   |
| Case B12B                                                   |                                      |       |                |       |               |       |              |       |            | of the to |                |           |
|                                                             |                                      |       |                | Eng   | 'g CM H.O. &  |       | Process      | F     | Project    | Tot       | al Plant Cost  | Lower     |
|                                                             | Item/Description                     | Bare  | Erected Cost   |       | Fee           | Сс    | ontingencies | Con   | tingencies |           | (\$/1000)      | Coal Feed |
| 5B.1                                                        | CO <sub>2</sub> Removal System       | \$    | 359,822        | \$    | 31,060        | \$    | 62,120       | \$    | 80,756     | \$        | 533,757        | Rate from |
| 5B.2                                                        | CO <sub>2</sub> Compression & Drying | \$    | 74,531         | \$    | 7,453         | \$    | -            | \$    | 16,397     | \$        | 98,381         | RC 12 to  |
|                                                             | SUBTOTAL                             | \$    | 434,353        | \$    | 38,513        | \$    | 62,120       | \$    | 97,152     | \$        | 632,139        | R12R and  |
| UKy-CAER CCS Compared to RC B12B, Constant Net Power Output |                                      |       |                |       |               |       |              |       | from       |           |                |           |
|                                                             |                                      | Bare  | Erected Cost   | Eng'  | g CM H.O. &   |       | Process      | Pi    | roject     | Tota      | al Plant Cost  | P12P to   |
|                                                             | Item/Description                     |       |                |       | Fee           | Со    | ntingencies  | Conti | ngencies   |           | (\$/1000)      |           |
| 5B.1                                                        | CO2 Removal System                   | \$    | 180,048        | \$    | 15,542        | \$    | 31,084       | \$    | 40, 109    | \$        | 267,082        |           |
| 5B.2                                                        | CO2 Compression and Drying           | \$    | 72,469         | \$    | 7,247         | \$    | -            | \$    | 15,943     | \$        | 95,659         | CAER      |
|                                                             | SUBTOTAL                             | \$    | 252,517        | \$    | 22,789        | \$    | 31,084       | \$    | 56,351     | \$        | 362,742        | CCS       |

50% Reduction in CO<sub>2</sub> Removal System Cost

🕎 Center for Applied Energy Research

#### **Updated Power**

| POWER SUMMARY                              | Cas | e B12B  | UKy<br>( | /-CAER<br>CCS | Percent<br>Difference | Constant Not Dowor Output       |
|--------------------------------------------|-----|---------|----------|---------------|-----------------------|---------------------------------|
| NET POWER, kWe                             | *   | 550,000 | *        | 550,000       | 0% 🔶                  | Higher Thermal Efficiency       |
| Net Plant Efficiency (HHV)                 | *   | 32.50%  | *        | 33.97%        | 5% 🗡                  | Thigher thermal Enciency        |
| As-Received Coal Feed (lb/hr)              | *   | 495,578 | *        | 473,362       | -4% 📐                 |                                 |
| Steam Turbine Power (Gross, kWe)           | *   | 642,000 | *        | 632,779       | -1% 🔸                 | - Lower: Smaller auxiliary load |
| AUXILIARY LOAD SU                          | JMM | ARY, kW | le 🛛     | ,             |                       |                                 |
| Coal Handling & Conveying                  | *   | 480     | *        | 458           | -4% —                 | LA                              |
| Pulverizers                                | *   | 3,370   | *        | 3,219         | -4%                   |                                 |
| Sorbent Handling & Reagent Preparation     | *   | 1,070   | *        | 1,022         | -4%                   |                                 |
| Ash Handling                               | *   | 780     | *        | 745           | -4%                   |                                 |
| Primary Air Fans                           | *   | 1,670   | *        | 1,595         | -4%                   |                                 |
| Forced Draft Fans                          | *   | 2,130   | *        | 2,035         | -4%                   | Lower: Lower coal               |
| Induced Draft Fans                         | *   | 8,350   | *        | 7,976         | -4%                   | feed rate                       |
| SCR                                        | *   | 60      | *        | 57            | -4%                   |                                 |
| Activated Carbon Injection (kW)            | *   | 27      | *        | 26            | -4%                   |                                 |
| Dry Sorbent Injection (kW)                 | *   | 108     | *        | 103           | -4%                   | Lower: Smaller blowers          |
| Baghouse                                   | *   | 110     | *        | 105           | -4%                   | and pumps due to shorter        |
| Wet FGD                                    | *   | 3,550   | *        | 3,391         | -4%                   | columns                         |
| CO <sub>2</sub> Capture System Auxiliaries | *   | 16,000  | *        | 10,867        | -32%                  | Lower: Lower Steam              |
| CO <sub>2</sub> Compression                | *   | 35,690  | *        | 34,086        | -4%                   |                                 |
| Miscellaneous Balance of Plant             | *   | 2,000   | *        | 1,910         | -4% 🕨                 |                                 |
| Steam Turbine Auxiliaries                  | *   | 400     | *        | 394           | -1% 🌱                 | Lower: Smaller HHV input        |
| Condensate Pumps                           | *   | 640     | *        | 611           | -4% 🕨                 | due to higher thermal           |
| Circulating Water Pump                     | *   | 7750    | *        | 7,257         | -6%                   | water requirement and           |
| Ground Water Pumps                         | *   | 710     | *        | 674           | -5%                   | small cooling tower             |
| Cooling Tower Fans                         | *   | 4010    | *        | 3,911         | -2%                   | Sman cooling tower              |
| Transformer Losses                         | *   | 2380    | *        | 2,153         | -10% ←                | Lower: Smaller gross            |
| TOTAL AUXILIARIES, kWe                     | -   | 91,000  |          | 82,595        | -9%                   | power production                |

2019 Carbon Management Technology Conference

# Updated COE and Cost of CO<sub>2</sub> Captured

|                                                              |         | UKy-CAER | Percent    |
|--------------------------------------------------------------|---------|----------|------------|
|                                                              | RC B12B | CCS      | Difference |
| Net Power, Mwe                                               | 550     | 550      | 0%         |
| Total Plant Cost (2011 \$/kW)                                | 3524    | 2977     | -16%       |
| Total Overnight Cost (2011\$/kW)                             | 4333    | 3660     | -16%       |
| Total As-Spent Cost (2011\$/kW)                              | 4940    | 4173     | -16%       |
| Cost of Electricity (\$/MWh, 2011\$)                         | 133.2   | 116.9    | -12%       |
| CO <sub>2</sub> T&S Costs                                    | 9.6     | 8.3      | -13%       |
| Fuel Costs                                                   | 30.9    | 29.5     | -5%        |
| Variable Costs                                               | 12.3    | 12.4     | 1%         |
| Fixed Costs                                                  | 15.4    | 13.0     | -16%       |
| Capital Costs                                                | 72.2    | 61.9     | -14%       |
| Cost of CO <sub>2</sub> Captured (\$/tonne CO <sub>2</sub> ) | 58.2    | 41.4     | -29%       |



UKy-CAER Advantages:

- 1) Two Stage Solvent Regeneration
- 2) Pressurized Stripping
- 3) Split Rich Primary Stripper Feed
- 4) Advanced Solvent
- 5) CO<sub>2</sub> Recycle
- 6) High Solvent Cyclic
  - Capacity, High Rich
  - Loading and Low Lean
  - Loading
- 7) Heat Integration
- 8) Exergy Loss Minimization

#### **Next Steps**

- CO<sub>2</sub> Preconcentrating Membrane
- Absorber Temperature
   Profile Control



#### **Acknowledgements**



Some results presented were collected under awards:

Application of a Heat Integrated Post-combustion CO<sub>2</sub> Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant, DE-FE0007395

Large Pilot CAER Heat Integrated Post-combustion  $CO_2$  Capture Technology for Reducing the Cost of Electricity, DE-FE0026497

UKy-CAER Heat-integrated Transformative CO<sub>2</sub> Capture Process in Pulverized Coal Power Plants, DE-FE0031583

U.S. DOE NETL: Andy Aurelio EPRI: Abhoyjit Bhown, Joseph Swisher WP: James Simpson UKy-CAER Team

