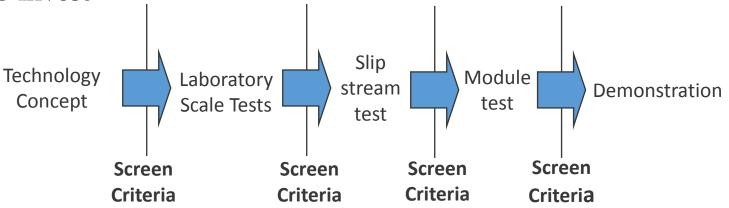
Utilizing systems analysis to inform carbon capture technology development

Dale Keairns¹, Tim Fout², Robert Stevens², Travis Shultz², Richard Newby³, Alex Zoelle⁴, Mark Woods³

> Carbon Management Technology Conference Houston, Texas, July 17-20, 2017


Illustrating the role of systems analysis

- Boundaries for the systems analysis
 - Technology Focus: Economic carbon management
 - Technology State: Pre-commercial
 - Application: Fossil electric power generation

• Question for systems analysis

- What are the priority data needs
- What scale to invest

Supporting technology development

Develop Reference Plant Incorporating Innovative Technology

- Review and assess innovative technology test data and concepts
- Model innovative technology
- Model integrated system using Baseline plant data and assumptions

Baseline Report – PC Capture Plant

- Bituminous coal
- 550 MW greenfield plant
- Midwestern U.S. ISO conditions
- Base load
- Amine-absorbent CO₂ capture
- Plant performance and cost

Supporting technology development

- **NETIONAL** ENERGY TECHNOLOGY LABORATORY

Develop Reference Plant Incorporating Innovative Technology

- Review and assess innovative technology test data and concepts
- Model innovative technology
- Model integrated system using Baseline plant data and assumptions

Innovative Carbon Management Technology Studies Include

- PC post-combustion capture
- IGCC pre-combustion capture
- Chemical looping technologies
- Supercritical CO₂ cycles
- Solid oxide fuel cells

Baseline Report – PC Capture Plant

- Bituminous coal
- 550 MW greenfield plant
- Midwestern U.S. ISO conditions
- Base load
- Amine-absorbent CO₂ capture
- Plant performance and cost

Supporting technology development

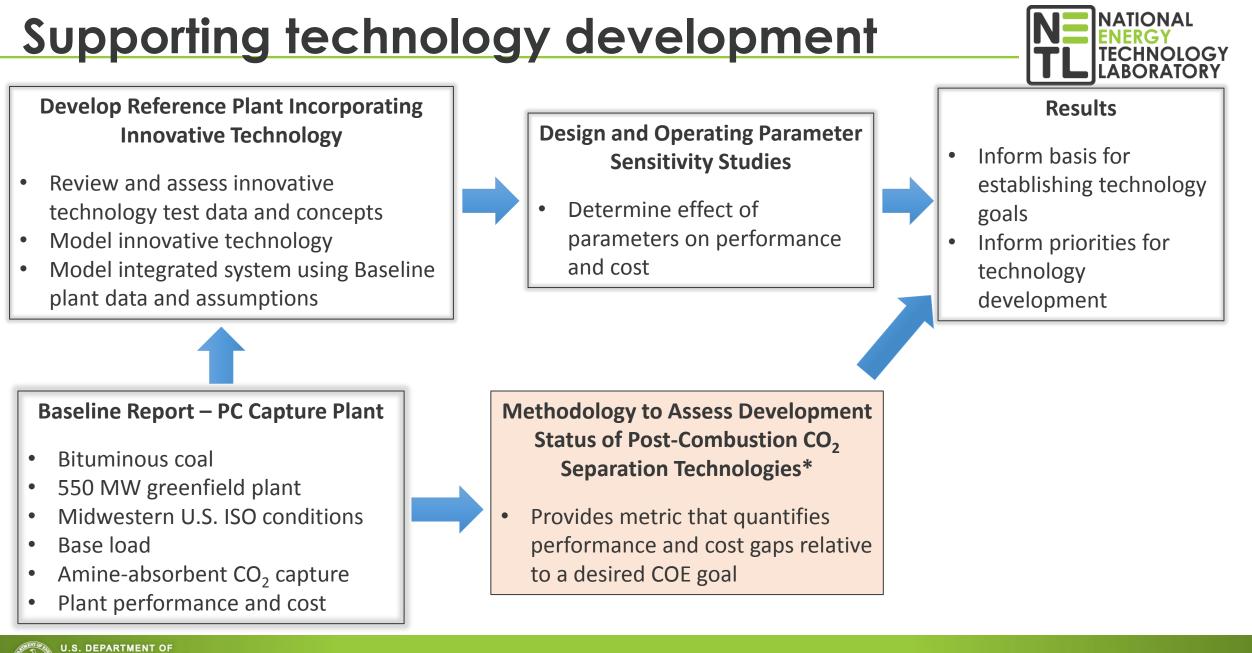
Develop Reference Plant Incorporating Innovative Technology

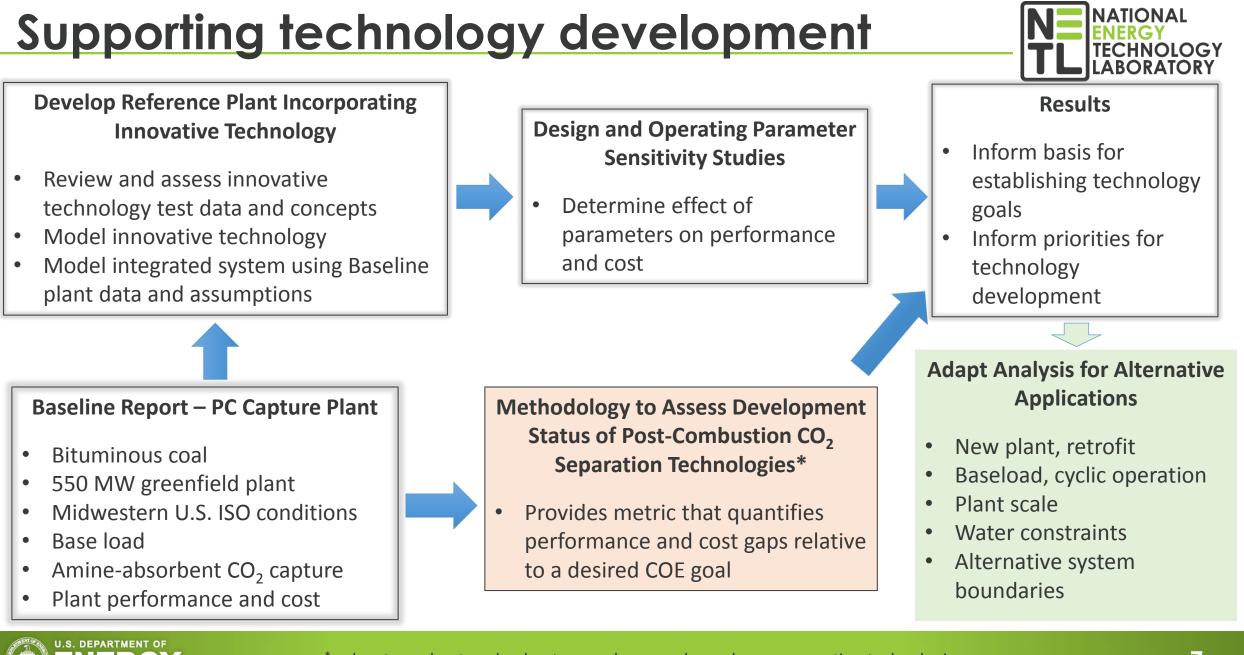
- Review and assess innovative technology test data and concepts
- Model innovative technology
- Model integrated system using Baseline plant data and assumptions

Design and Operating Parameter Sensitivity Studies

• Determine effect of parameters on performance and cost

Results

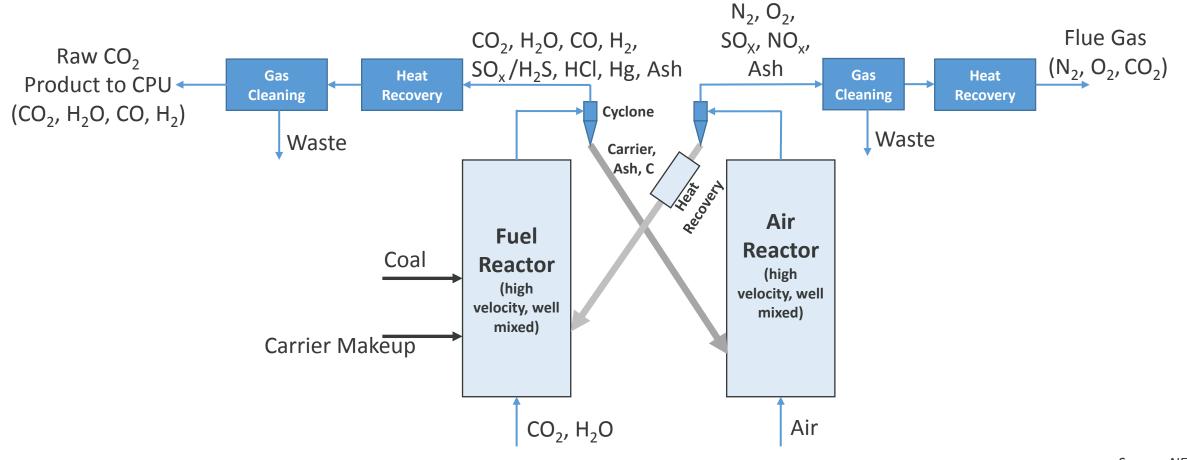

- Inform basis for establishing technology goals
- Inform priorities for technology development



Baseline Report – PC Capture Plant

- Bituminous coal
- 550 MW greenfield plant
- Midwestern U.S. ISO conditions
- Base load
- Amine-absorbent CO₂ capture
- Plant performance and cost

Chemical Looping Combustion (CLC)



- Chemical Looping Combustion Concepts
 - Combustion, chemical looping with oxygen uncoupling (CLOU)
 - Candidate Oxygen carriers: Ni, Mn, Cu, Fe, Ca
 - Fuel options: coal, natural gas, syngas, biomass, petcoke
 - Atmospheric and pressurized
- International studies: U.S., Sweden, Korea, Spain, China, UK, Canada
- Experimental testing
 - Multiple international academic testing limited to bench scale up to 150 kWt
 - 3 MWt GE-Alstom CFB facility

Chemical Looping Combustion Circulating Fluid Bed Concept

Utilizing systems analysis to inform CLC development priorities

Chemical Looping Combustion (CLC) Reference Plant

- Review and assess CLC test data and concepts
- Model chemical looping process
- Model integrated system using Baseline plant data and assumptions

Baseline Report – PC Capture Plant

- Bituminous coal
- 550 MW greenfield plant
- Midwestern U.S. ISO conditions
- Base load
- Amine-absorbent CO₂ capture
- Performance and cost data base

CLC Reference Plant – Design and Operating Parameter Sensitivity Studies

- Oxygen carrier: conversion/circulation rate
- Oxygen carrier makeup
- Oxygen carrier makeup cost
- Fuel reactor carbon gasification conversion
- Component costs (e.g., char separator)
- Use of CO₂ purification unit (CPU)
- Fuel and air reactor temperatures
- Fuel and air reactor gas velocities
- Air reactor outlet gas oxygen content

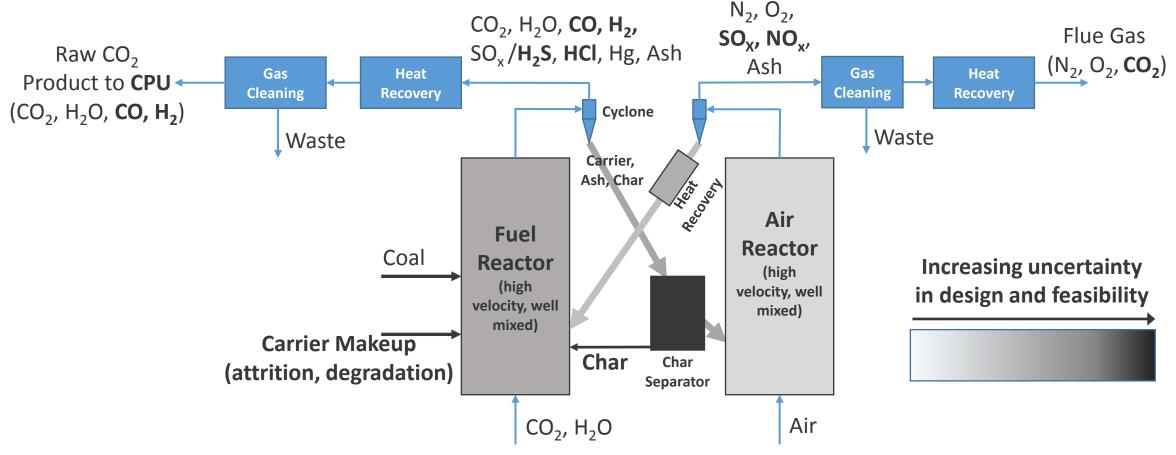
Process Model Simulation and Sensitivity Case Study Results

- Inform basis for establishing technology goals
- Inform priorities for technology development

CLC CFB Reference Plant Performance and Cost

Oxygen carrier type	Fe ₂ O ₃	CaSO ₄	BBR Case 12
Plant Capacity (MW)	550	550	550
Plant Efficiency (%, HHV)	32.8	31.9	28.4
Carbon Capture Efficiency (%)	95.8	85.9	90
CO ₂ Product Purity (mole% CO ₂)	99.0	99.95	100
Total Plant Cost (\$/kW)	2,631	2,975	3,563
Cost of Electricity (\$/kWh) first-year w/o T&S	126.4	117.5	137.3

CLC CFB Reference Plant Capital Cost


Oxygen carrier type	Fe ₂ O ₃	CaSO ₄	BBR Case 12
Plant Efficiency (%, HHV)	32.8	31.9	28.4
Total Plant Cost (\$/kW)	2,631	2,975	3,563
CLC System Cost [*] (%)	25.3	23.4	
CPU Cost (%)	5.7	12.2	
Reducer Reactor Cost (% of CLC System Cost)	< 2	< 2	

* Chemical Looping Combustion System Components: reducer reactor, cyclones, piping; oxidizer reactor, cyclones, piping; char-carrier separator; HRSGs; FD/ID fans

Systems analysis messages for CFB concept development

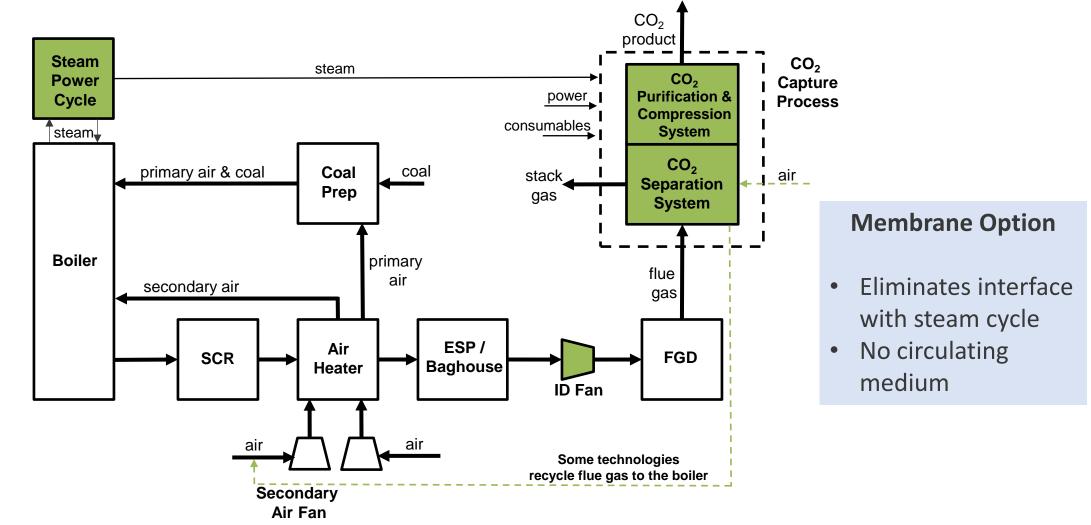
CLC Assessment Results Perspective

- The assessment is founded on the premise that the CLC power plant operability and availability are comparable to that of the conventional PC power plant and do not limit the technology's ultimate feasibility experimental basis is required to support this premise
- The "reference-case" process simulations show the possibility that CLC could provide significant performance and cost advantages over conventional PC power plants using conventional, amine-based CO_2 capture technology
- The fuel reactor is the key developmental component in the CLC power plant
- Steady-state test data is required that is representative of the integrated CLC reactors, or of individual CLC reactors, suitable for scale-up to commercial capacity


CLC Assessment Results Perspective (cont'd)

- Oxygen carrier cost and life are key parameters for achieving a low cost system
- The cost of the fuel reactor will represent only a small portion of the CLC power plant total cost and its development focus should be on achieving acceptable operability and reliability, and not on compact vessel design
- Carrier/char separation is required for circulating bed concepts: separation performance, reliable and within cost constraints
- The CO₂ specification is an important parameter and affects system cost
- The analyses provide understanding of risk: the combined effects of a few of the uncertain sensitivity parameters can result in the technology not being competitive; balance-of-plant equipment (e.g., heat recovery, gas cleaning) specifications, conceptual designs, and cost estimates are required

Representation of Post-Combustion Capture



Representation of Post-Combustion Capture

Utilizing systems analysis to inform membrane development priorities

Post-Combustion Membrane Capture Reference Plant

- Review and assess membrane test data and concepts
- Model membrane process
- Model integrated system using Baseline plant data and assumptions

Baseline Report – PC Capture Plant

- Bituminous coal
- 550 MW greenfield plant
- Midwestern U.S. ISO conditions
- Base load
- Amine-absorbent CO₂ capture
- Performance and cost data base

Membrane Design and Operating Parameter Sensitivity Studies		
 CO₂ permeance Gas constituents selectivity (CO₂, N₂, O₂, H₂O, SO₂) Membrane thickness 		Proc and
 Membrane module design and performance (capacity, pressure drop, mass transfer) Membrane flow configuration (counter- current, cross-flow, co-current) Process configuration (flue gas pressure, single flue gas membrane, staged) Membrane cost and life 	•	Inf est go Inf teo

Process Model Simulation and Sensitivity Case Study Results

- Inform basis for establishing technology goals
- Inform priorities for technology development

Membrane Guidance Illustrations

- Membrane-based CO₂ capture has the potential to provide performance and cost benefits over conventional, solvent-based technologies if specific membrane characteristics can be achieved
- Water vapor must be considered in membrane process modeling efforts due to its high permeability and tendency to be condensed between process stages typically not included as a gas stream test constituent
- For a low-pressure, single flue gas membrane configuration, research focused on advanced, high-selectivity (>50 to 200) membranes is not a priority, since there is limited benefit in COE reduction
- Membrane-based CO_2 capture processes that apply flue gas pressurization are not a priority, since there is limited cost advantage over low-pressure processes
- All membrane-based CO_2 capture processes will require raw CO_2 -stream purification (use of a CPU rather than conventional CO_2 compression) to meet CO_2 product gas purity specifications, with the O_2 specification being the most stringent

Assess the status of technology development with respect to performance and cost metrics*

Objectives:

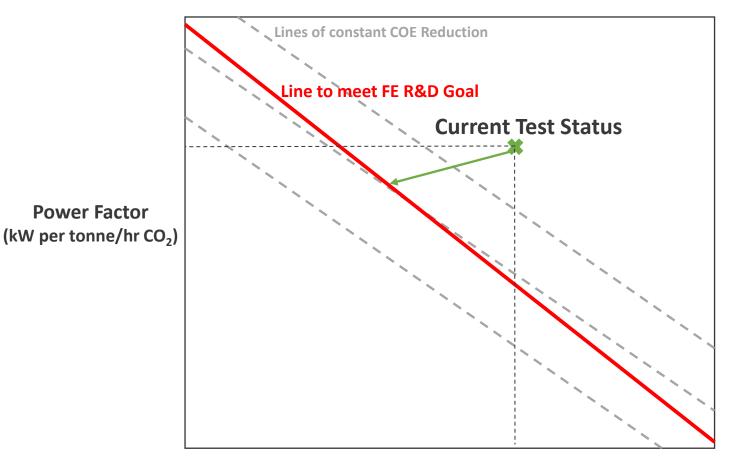
- Identify the minimal requisite parameters that should be measured by a technology developer through laboratory investigations to effectively support post-combustion CO₂ capture system studies
 - ✓ Applicable for systems analysis: pre-screening, screening, commercial technoeconomic analysis (TEA)
- Create a tool to test new experimental results and updated equipment performance and cost estimates
 - ✓ Applicable for post-combustion capture technologies: solvents, sorbents, adsorbents, membranes, phase change

<u>Approach</u> CO_2 product Steam CO_2 steam CO₂ **Power** Capture **Purification &** power Cycle Process Compression Develop two consumables **System** `steam↓ parameters that CO_2 primary air & coal Coal coal stack air **Separation** characterize the Prep gas **System** capture system Boiler economic potential primary flue air secondary air gas > Power ESP / Air FGD SCR **Baghouse** Heater **ID** Fan > COE impact air air Some technologies recycle flue gas to the boiler Secondary Air Fan

consumption

impact

Characteristic Parameters



- Power Factor: Total CO₂ capture process power-impact on reference plant/(tonne/hr CO₂), dependent on:
 - 1. CO₂ separation system auxiliary power
 - 2. CO_2 separation system heating duty and heating temperature
 - 3. CO_2 separation system cooling water duty
 - 4. Raw CO_2 gas composition and pressure
- COE Factor: Total CO₂ capture process cost-impact on reference plant/(tonne/hr CO₂), dependent on:
 - 1. CO_2 separation system materials consumption rates and materials replacement prices
 - 2. CO_2 separation system capital investment for process equipment

Methodology Plot

The acceptable Power Factor and COE Factor ranges can be translated into the range of test parameter goals for the technology

COE Factor (Million \$ per tonne/hr CO₂)

Concluding Message

- Important tasks for development of innovative carbon management technology development include:
 - Understand the application system boundaries, needs, and constraints
 - Utilize systems analysis to inform the priority process design, operation, and cost parameters that affect system performance and cost
 - Focus development on obtaining data to address the priority parameters
 - Implement testing at the appropriate scale to obtain relevant data
- An approach and methodology has been developed and implemented to guide development of innovative carbon management technology

