

Mobile Carbon Dioxide Removal: A Baseline Cost Estimate and Testing Protocol

Christina Reynolds, Francisco Sotomayor, & Christian Lastoskie

Department of Civil & Environmental Engineering, University of Michigan Carbon Management Technology Conference, 20 July 2017

Acknowledgements

Vehicles are a significant source of emissions

Image from ICCT

Transportation is the highest emitting sector through 2040

U.S. energy-related carbon dioxide emissions (Reference case) billion metric tons of carbon dioxide billion metric tons of carbon dioxide 2016 2016 3.0 3.0 history projections history 2.5 2.5 2.0 2.0 transportation 1.5 1.5 electric power 1.0 industrial 1.0 residential 0.5 0.5 commercial 0.0 0.0 1980 1990 2000 2010 2020 2030 2040 1980 1990 2000 2010 2020

projections petroleum natural gas coal 2030 2040

Image from US EIA

Carbon-fueled vehicles retain the highest market share through 2040

Climate stabilization targets cannot be achieved without carbon dioxide removal from mobile emission sources!

But how do we accomplish this?

Approaches to carbon capture from stationary sources

Amine Solvents

Conventional or Novel Adsorbents (zeolites, activated carbons, MOFs)

Image from CO2CRC

Direct Air Capture is expensive

Image from Carbon Engineering; References: Socolow et al. 2011, House et al. 2011, Brandani 2012

Direct Air Capture is expensive

Expected cost:

> \$600/tCO₂

10 times the cost of capture from power plants

Image from Carbon Engineering; References: Socolow et al. 2011, House et al. 2011, Brandani 2012

Minimum work to separate increases as CO_2 concentration decreases

$$w_{min,100\%} = -\frac{RT}{y_A M_A} \left[y_A \ln(y_A) + (1 - y_A) \ln(1 - y_A) \right]$$

Minimum work to separate increases as CO_2 concentration decreases

$$w_{min,100\%} = -\frac{RI}{y_A M_A} \left[y_A \ln(y_A) + (1 - y_A) \ln(1 - y_A) \right]$$

So let's consider a mobile carbon capture system modeled along the lines of a stationary capture system...

Carbon Dioxide Removal from Mobile Emission Sources

Carbon Dioxide Removal from Mobile Emission Sources

To capture the CO_2 emissions from 300 miles of driving in a lightduty vehicle, we need 650 kg of adsorbent with 20 wt% CO_2 capacity.

Mass requirements can be significantly decreased by changing several key conditions.

How do we offload CO_2 once it's captured?

How do we offload CO_2 once it's captured?

Where and when to offload CO_2 ?

Regeneration at Gas Station (travel distance = **300 mi**) Regeneration at Home (travel distance = **30 mi**)

What energy source to use?

Power Plant or Renewables

\$0.10/kWh

Internal Combustion Engine

\$3/gallon

Weight/fuel penalty

Separation and compression

Capital costs

Weight/fuel penalty

target fuel economy weight \rightarrow miles per gallon 45 mpg 7%↓in mpg per 10%↑in mass

Separation and compression

Capital costs

Weight/fuel penalty

target fuel economy weight \rightarrow miles per gallon

Separation and compression

 η_{II} separation/compression carbon intensity of electricity 45 mpg 7%↓ in mpg per 10% ↑ in mass

0.40 / 0.85 0.5 kg/ kWh

Capital costs

Weight/fuel penalty

target fuel economy weight \rightarrow miles per gallon

Separation and compression

 η_{II} separation/compression carbon intensity of electricity

45 mpg 7% ↓ in mpg per 10% ↑ in mass

0.40 / 0.85 0.5 kg/ kWh

Capital costs

100%

separation and compression costs

Weight/fuel penalty

Separation and compression

target fuel economy weight \rightarrow miles per gallon

 η_{II} separation/compression carbon intensity of electricity

45 mpg 7% ↓ in mpg per 10% ↑ in mass

0.40 / 0.85 0.5 kg/ kWh

separation and compression costs

Capital costs

100%

Transportation and storage

pipeline transport distance CO_2 emissions storage \$2/tonne 100 km 0.005 kg/tonne-km \$13/tonne

I.	I.	I.	I.	I.	1	I.	I.	I.	I.	1
\$0	\$50	\$100	\$150	\$200	\$250	\$300	\$350	\$400	\$450	\$500
f/tonne CO ₂ avoided										

I.	I.	I.	I.	I.	1	L. L.	1	1	I.	I.
\$0	\$50	\$100	\$150	\$200	\$250	\$300	\$350	\$400	\$450	\$500
				\$/to	nne CO_2 av	oided				

\$0 \$50 \$100 \$150 \$200 \$250 \$300 \$350 \$400 \$450 \$500 \$/tonne CO_2 avoided

What does this mean for you?

Average car emissions:

Price of CO₂ abatement:

Annual cost to capture emissions:

6 tons CO₂ per year

\$70/t

What does this mean for you?

Average car emissions:

Price of CO₂ abatement:

6 tons CO₂ per year

\$70/t

Annual cost to capture emissions:

\$420

Almost equal share of emissions from heavy duty and light duty vehicles

Almost equal share of emissions from heavy duty and light duty vehicles

CO_2 capture from heavy duty vehicles is comparable with light duty best case scenario

What does this mean for you?

Freight trucking emissions:

Price of CO_2 abatement:

Average ton-miles of US freight:

New annual shipping premium:

530 M tonnes of CO_2 per year

\$63/ton

2.6 B (or 8 ton-miles per person)

What does this mean for you?

Freight trucking emissions:

Price of CO_2 abatement:

Average ton-miles of US freight:

New annual shipping premium:

530 M tonnes of CO_2 per year

\$63/ton

2.6 B (or 8 ton-miles per person)

\$12.60

MCDR costs are on par with other carbon capture methods and significantly less than DAC

Values from McKinsey, Supekar, Ranjan, Lutsey, & EPA

Testing protocol permits comprehensive evaluation of material performance

Static (@ 298~343K) \rightarrow

Testing protocol permits comprehensive evaluation of material performance

Static (@ 298-343K) \rightarrow Dynamic, N₂-CO₂ blend \rightarrow Dynamic, exhaust blend \rightarrow Dynamic, wet exhaust blend -

Testing protocol permits comprehensive evaluation of material performance

Static (@ 298-343K) \rightarrow Dynamic, N₂-CO₂ blend \rightarrow Dynamic, exhaust blend \rightarrow Dynamic, wet exhaust blend \rightarrow Proof-of-concept (1:4 scale) using actual exhaust

- > Mobile carbon dioxide removal is theoretically feasible and economical
 - > Especially when compared to direct air capture

- > Mobile carbon dioxide removal is theoretically feasible and economical
 - > Especially when compared to direct air capture
- > It has the potential to reduce total US GHG emissions by $\sim 20\%$

- > Mobile carbon dioxide removal is theoretically feasible and economical
 - > Especially when compared to direct air capture
- > It has the potential to reduce total US GHG emissions by $\sim 20\%$
- \succ Various adsorbents exist commercially that can capture CO₂ at scale

- > Mobile carbon dioxide removal is theoretically feasible and economical
 - Separate the second terms of terms
- > It has the potential to reduce total US GHG emissions by $\sim 20\%$
- \succ Various adsorbents exist commercially that can capture CO₂ at scale
- Laboratory testing must include actual exhaust

- > Mobile carbon dioxide removal is theoretically feasible and economical
 - Sepecially when compared to direct air capture
- > It has the potential to reduce total US GHG emissions by $\sim 20\%$
- \triangleright Various adsorbents exist commercially that can capture CO₂ at scale
- Laboratory testing must include actual exhaust
- > There is much, much more to learn

- > Mobile carbon dioxide removal is theoretically feasible and economical
 - > Especially when compared to direct air capture
- > It has the potential to reduce total US GHG emissions by $\sim 20\%$
- \succ Various adsorbents exist commercially that can capture CO₂ at scale
- Laboratory testing must include actual exhaust
- > There is much, much more to learn

