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Vehicles are a significant source of emissions
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Transportation is the highest emitting sector

through 2040
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billion metric tons of carbon dioxide billion metric tons of carbon dioxide
2016 2016
3.0 history | projections 3.0 history | projections

2.5 2.5 \/\//\\/_\_’
petroleum

2.0 transportation 2.0
natural gas

1.5 1.5

electric power

1.0 W industrial 1.0
coal

05 residential 0.5

commercial
1 0.0 .

‘193[} 1990 2000 2010 2020 2030 2040
Image from US EIA

ﬂ.ﬂ L] L L L I I
1980 1990 2000 2010 2020 2030 2040




Carbon-fueled vehicles retain the highest

market share through 2040
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Climate stabilization targets cannot be achieved without carbon
dioxide removal from mobile emission sources!

But how do we accomplish this?



Approaches to carbon capture from

stationary sources
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Direct Air Capture 1s expensive
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Direct Air Capture 1s expensive

Expected cost:

> $600/tCO,

» 10 times the cost of
capture from power
plants
.
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Minimum work to separate increases as CO,
concentration decreases
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Minimum work to separate increases as CO,

concentration decreases

Direct Air Capture Stationary Capture Mobile Capture
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So let’s consider a mobile carbon capture system

modeled along the lines of a stationary capture system...



Carbon Dioxide Removal from Mobile
Emission Sources




Carbon Dioxide Removal from Mobile

Emission Sources

To capture the CO, emissions from 300 miles of driving in a light-
duty vehicle, we need 650 kg of adsorbent with 20 wt% CO, capacity.

Mass requirements can be significantly decreased by
changing several key conditions.




How do we offload CO, once it’s captured?




How do we offload CO, once it’s captured?

Must decide: (1) where and when offloading occurs

‘ (2) what energy source is used
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Where and when to offload CO,?

Petrol

)

Regeneration at Gas Station Regeneration at Home
(travel distance = 300 mi) (travel distance = 30 mi)




What energy source to use?

D
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Power Plant or Renewables Internal Combustion Engine

$0.10/kWh $3/gallon



Cost categories and relevant assumptions
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Cost categories and relevant assumptions

Weight/fuel penalty

Separation and compression

Capital costs

Transportation and storage

target fuel economy

weight — miles per gallon

Ny separation/compression

carbon intensity of electricity

100%

pipeline transport
distance
CO, emissions

storage

45 mpg
7% | in mpg per 10% T in mass

0.40 / 0.85
0.5 kg/ kWh

separation and compression costs

$2/tonne

100 km

0.005 kg/tonne~-km
$13/tonne



Cost estimate for mobile capture scenarios
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Cost estimate for mobile capture scenarios
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Cost estimate for mobile capture scenarios

Ofﬂoading Frequency Energy Source B Transport and Storage ™ Capital Costs Separation/ Compression Weight/Fuel Penalty
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What does this mean for you?

Average car emissions: 6 tons COz2 per year
Price of COz2 abatement: $70/t

Annual cost to capture emissions:



What does this mean for you?

Average car emissions: 6 tons COz2 per year
Price of COz2 abatement: $70/t

Annual cost to capture emissions: $420



Almost equal share of emissions from heavy

duty and light duty vehicles

GLOBAL ANTHROPOGENIC TRANSPORT EMISSIONS ROAD TRANSPORT
EMISSIONS =~ 8.8 Gt CO, EMISSIONS
= 38 Gt CO, =~ 6.5 Gt CO,

4_6(}6 ‘a




Almost equal share of emissions from heavy

duty and light duty vehicles

Petrol
|III|

Travel distance/regeneration period: 250 mi (400 km)
Target fuel economy 6.8 mpg

y




CO, capture from heavy duty vehicles is
comparable with light duty best case scenario

$/tonne CO, avoided



What does this mean for you?

Freight trucking emissions: 530 M tonnes of CO, per year
Price of CO, abatement: $63/ton
Average ton-miles of US freight: 2.6 B (or 8 ton-~-miles per person)

New annual shipping premium:



What does this mean for you?

Freight trucking emissions: 530 M tonnes of CO, per year
Price of CO, abatement: $63/ton
Average ton-miles of US freight: 2.6 B (or 8 ton-~-miles per person)

New annual shipping premium: $12.60



MCDR costs are on par with other carbon

capture methods and significantly less than DAC
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Testing protocol permits comprehensive
evaluation of material performance

Static CO, Adsorption at 298K
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Testing protocol permits comprehensive

evaluation of material performance
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Testing protocol permits comprehensive

evaluation of material performance
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