

Coupled Simulations in Steam Methane Reformers using CFD and Reaction Kinetics

★↓ ※ ④ ❸ 畧 歩

M

Niveditha Krishnamoorthy (Combustion Tech-Specialist) Chandraprakash Tourani (Sr. Application Engineer) Ravindra Aglave, (Director - Chemical & Process Industry)

Steam Methane Reformer

- Steam Reforming: A method for producing hydrogen, carbon monoxide from hydrocarbon fuels like natural gas
- **The hydrogen produced can be used for:**
 - Feedstock for fuel cells
 - Hydrogenating vegetable oils for food industry
 - Industrial synthesis of ammonia (Haber process)
 - Hydrocracking of heavy petroleum fractions into lighter ones
 - Hydro-desulfurization for sulfur removal from natural gas and other refined petroleum products

http://www.eajv.ca/english/h2

High temperature (700-1100 deg C) $CH_4 + H_2O \rightleftharpoons CO + 3 H_2$ [Endothermic]

(in the presence of a metal based catalyst)

Low Temperature water gas shift reaction

 $CO + H_2O \rightleftharpoons CO_2 + H_2$ [Mildly Exothermic]

Modeling Challenges

- Typical reformer furnace could have large number of burners
- Several hundred process tubes present
- Furnace dimensions are orders of magnitude larger than process tube dimensions
- Burners, process tube spacing influences flow patterns and heat flux distribution.
 - Hydrogen conversion rates affected
 - Tube wall temperatures that could lead tube failures if too high

Hydrogen production by Steam Reforming, Ray Elshout, Chemical Engineering, May 2010

Modeling Methodologies

- **Current codes other than STAR-CCM+**
 - Highly simplified representation of firebox and 1D modeling of process side
 - Unable to capture geometry related influences
 - Recirculation zones inside the furnace Flue gas mal distribution
 - Shadowing effects on process tubes
 - Hot spots on process tubes leading to tube failures

STAR-CCM+

- 3D modeling of burner side [Firebox] and 3D modeling of process side
 - Computationally expensive but possible
- 3D modeling of Firebox and 1D modeling of process side (Reacting Channel Co-simulation)
 - Elegant way of coupling firebox side physics to tube side physics in a computationally efficient manner
 - Geometry related influences on tube wall temperatures and conversion rates effectively captured

Reacting Channel Co-Simulation in STAR-CCM+

Furnace Side Modeling

- ③ 3-D CFD Calculations to get:
- Temperature / Heat distribution in furnace box
- Tube skin temperature
- Image: Flame shape and length
- **FGR pattern**
- Radiant : Convective section heat balance
- Emissions
 - NOx
 - CO

3-D and 1-D coupling

Fire Box Side

Firebox Side Results

Generic Reformer Pipes Burner

Gas Phase Temperature

Wall Temperature

Net Heat Transfer at the wall

Tube Side Physics -(1)

- **Beat Transfer Coefficient Computation**
 - Simple pipe
 - Packed beds
 - Leva/Grummer
 - Beek
 - DeWasch/Froment
 - User-defined tabular input
- Heat transfer through a packed bed has a significant effect on the performance of the equipment
- Much higher heat transfer coefficient values seen in packed beds than simple pipes. This significantly influences conversion rates

Heat Transfer Coefficient Comparison

Tube Side Physics –(2)

- Pipe friction correlations for packed beds and simple pipes available (\mathcal{D})
- Accurate pressure drop through packed tubes can be captured (\mathcal{D})

Pressure drop comparison between simple pipe and packed bed

Tube Side Physics -(3)

③ Steam-Methane reforming kinetics

- Detailed chemistry
- Reduced chemistry
- User-defined kinetic rates

Output Quantities

- Methane conversion
- Hydrogen yield
- Process fluid temperature
- Tube wall temperature

Coupling between Firebox and Process Side

Coupling achieved through energy balance at the outer tube walls

Summary

- Correlations for heat transfer coefficient and pressure drop enables simulations of catalytic processes like SMR to be effectively simulated using reacting channel co-simulation
- Flexible kinetics description for process side enables users to optimize process side chemistry for accurate description of reactant conversion and product yields