

Redefining Steam Methane Reformer Performance in Hydrogen Production

Diane Dierking Johnson Matthey Process Technologies Oakbrook Terrace, Illinois

Heat Transfer – Tubular Reactors

What is **CATACEL**_{JM} Technology?

Catalysts & absorbents

Foils

CATACEL_{JM} **SSR** Technology Controlled Gas Flow and Wall Impingement

Novel Technology

- **CATACEL**_{JM} **SSR** is a novel, patentprotected steam methane reforming technology that provides leading-edge performance
- This technology delivers step-out increases in heat transfer, pressure drop and activity, which give a range of plant-specific operational benefits

CATACEL_{JM} SSR Technology Enhanced Heat Transfer

- Heat transfer, traditional pellets
 - Limited by static gas film at tube wall
 - Smaller pellets will help break up the gas film, but increase dP

- Highest heat transfer ensures heat is available where it is needed to drive reactions
 - 20% to 30% increase in heat transfer

CATACEL_{JM} **SSR** Technology Step-Change in Performance Characteristics

- Higher geometric surface area
 - 40% more surface area means more activity
 - Resilient to upsets
 - Higher conversion or more
 throughput at same fuel rate
- Increased void space with CATACEL_{JM} SSR
 - Pressure drop 10% to 20% lower
 - Lowers cost of compression and higher throughput for same pressure drop

CATACEL_{JM} SSR Technology Different Than Pellets

JM Johnson Matthey Process Technologies

- **CATACEL**_{JM} **SSR** design is tuneable to generate maximum value
 - Fan dimensions provide a number of degrees of freedom
 - Easy to adjust design, enhancing desired key performance characteristics
 - Heat Transfer
 - Geometric Surface Area (Activity)
 - Voidage (Pressure drop)

- Hydrogen plant switched from naphtha to natural gas feed
- Operation on natural gas has moved the plant to a TWT limit
- 15% more H₂ now required
- **CATACEL_{JM} SSR** heat transfer and activity deployed to minimize TWT
- Lower dP of CATACEL_{JM} SSR allows operation at 115% rate with same pressure drop as pellets at 100% rate

Case	Units	Base	1	2
Catalyst		Pellets	CATACEL _{JM} SSR	
Description		Base	Same feed Lower firing	More feed Extra firing
Relative feed flow	%	100.0	100.0	115.0
Relative fuel flow	%	100.0	99.5	112.5
Relative comb'n air flow	%	100.0	99.4	105.0
Excess air	%	15.0	15.0	7.5
Exit temperature	°F	1580	1580	1582
Methane slip	mol%dry	2.80	2.75	2.80
Max TWT	°F	1634	1625	1636
Pressure drop	psi	18.7	14.6	18.6
Fluegas exit temperature	°F	1827	1816	1854
Relative hydrogen make	%	100.0	100.2	115.0

Benefit Summary – Revamp/Throughput

- **CATACEL**_{JM} **SSR** is a novel, patentprotected steam methane reforming technology that provides leading-edge performance
- This technology delivers step-out increases in heat transfer, pressure drop and activity, which give a range of plant-specific operational benefits

JM 🛠

Johnson Matthey Process Technologies

• For revamps and plant uprates:

- ✓ 10% 20% throughput increase with no change in tube wall temperature margin
- Tubes can be replaced with those having thinner walls (lower cost per tube)

- **CATACEL**_{JM} **SSR** deployed as direct replacement for pellets
- Same feed rate and unchanged plant operating conditions
- Enhanced heat transfer performance of CATACEL_{JM} SSR allows less fuel to be consumed to achieve the same TWT
- Savings taken via a reduction in the natural gas fuel rate
- Considerable savings – maximized in high gas cost regions

	Units	Top Fired Reformer		
Catalyst Type		Pellets	CATACEL _{JM} SSR	
Nat Gas price \$/MBtu		9.48	9.48	
Hydrogen Product	MMSCFD	127.2	127.2	
Nat Gas Feed Rate	MSCFH	2,071	2,071	
Nat Gas Fuel to Burners	MSCFH	88.0	81.1	
Off-Gas to Burners	MSCFH	2,602	2,602	
Catalyst volume	ft ³	1990	1990	
Nat Gas Feed	\$M/year	178.0	178.0	
Nat Gas Fuel	\$M/year	7.6	6.9	
Saving on Nat Gas Fuel	\$/yr		\$ 697,001	
	%		7.9	

- 20-25% increase in achievable production rates
 - Highest sustained production rate with pellets was 71,000 SCFH (1,902 Nm³/hr)
 - Maximum rate with CATACEL_{JM} SSR is 90,000 SCFH (2,411 Nm³/hr)
 - Several campaigns > 85,000 SCFH (2,277 Nm³/hr)

H ₂ Production Rate (scfh)	Pellet (% of Operating Time)	CATACEL _{JM} SSR (% of
		Operating Time
40,000 - 50,000	24%	8%
50,000 - 60,000	31%	26%
60,000 - 70,000	34%	27%
70,000 - 80,000	N/A	21%
80,000 - 90,000	N/A	11%

- Fuel savings of 57%
 - Pellet: 6.6 SCFH H₂ / SCFH NG consumed as fuel
 - SSR: 15.5 SCFH H₂ / SCFH NG consumed as fuel

Operating Units – Remove Process Constraints

- CATACEL_{JM} SSR deployed as direct replacement for pellets
- Same feed rate and unchanged plant operating conditions
- Enhanced heat transfer performance of CATACEL_{JM} SSR
 - Less fuel consumed
 - Lower TWT and higher TWT margins
- Enhanced activity of CATACEL_{JM} SSR
 - Operation outside carbon forming zone without the use of alkalized catalyst

	Units	57-4Q: 57-4XQ	
Feed Flow Rate	MSCFH	315.4	315.4
Steam to Carbon Ratio	mol/mol	2.8	2.8
Inlet Temperature	°F	842	842
Off-Gas	MSCFH	157.7	157.7
Nat Gas Fuel	MSCFH	158.5	156.4
	%		1.3
Exit Temperature	°F	1592	1589
Exit Pressure	psig	346.7	346.7
Catalyst Pressure Drop	psi	17.7	20.7
Flue Gas Temperature	°F	1813	1795
Max Tube Wall Temperature	°F	1637	1623
	Δ°F		-14
Peak Heat Flux	Btu/hr/ft ²	42326	43153
Approach to Equilibrium	°F	4.7	2.0
Minimum Carbon Margin	°F	-38	37

- CATACEL_{JM} SSR deployed as direct replacement for pellets
- Equivalent hydrogen production
- Enhanced activity of CATACEL_{JM} SSR
 - Maintains comfortable carbon margin

- Enhanced heat transfer properties of CATACEL_{JM} SSR
 - Impact of additional firing on TWT is minimized

	Units	QUADRALOBE		
Steam to Carbon Ratio	mol/mol	2.9	2.9	2.7
Feed Flow Rate	%	Base	99.9	102.4
Fuel Flow Rate	%	Base	98.9	91.5
Total NG Flow Rate	%	Base	99.6	99.4
Exit Temperature	°F	1521	1521	1521
Max Tube Wall Temperature	°F	1593	1582	1582
Carbon Margin	°F	Base	+36	+23
Catalyst Pressure Drop	psi	38.4	38.4	37.0
Process Heat Duty	%	Base	99.8	96.2
Hydrogen Production	%	Base	Base Base	

Benefit Summary – Existing Plants

- **CATACEL**_{JM} **SSR** is a novel, patent-protected steam methane reforming technology that provides leading-edge performance
- This technology delivers step-out increases in heat transfer, pressure drop and activity, which give a range of plant-specific operational benefits

• For existing plants:

- ✓ 1% 2% throughput increases (at same trim fuel rate) when
 CATACEL_{JM} SSR used as direct replacement for standard pellets
- ✓ 2% 10% trim fuel savings when CATACEL_{JM} SSR used as direct replacement for standard pellets
- \checkmark 20% decrease in pressure drop compared to standard pellets
- ✓ Steam to Carbon decrease of 0.5 units (mol/mol) when replacing standard non-alkalized pellets

Top-Fired	Units	Pellets	CATACEL _{JM} SSR
Number tubes	_	460	385
Tube ID	in	4.50	4.61
Tube heated length	ft	41.8	46.4
Furnace length	ft	48.0	50.0
Furnace width	ft	76.5	61.5
Pressure drop	psig	29.9	30.4
Peak TWT	-	Base	Base

Benefit Summary – New Plants

- **CATACEL**_{JM} **SSR** is a novel, patentprotected steam methane reforming technology that provides leading-edge performance
- This technology delivers step-out increases in heat transfer, pressure drop and activity, which give a range of plant-specific operational benefits

• For new build projects:

- ✓ Decrease tube count by 10% 20%
- ✓ Decrease tube wall thickness, longer tubes
- ✓ 5% 20% lower capital cost of the radiant box

- Novel steam reforming technology, CATACEL_{JM} SSR
 - Provides improvement in heat transfer (overcomes limitations), activity, and pressure drop
 - Carbon-free operation over wider range of operating conditions
 - Tolerates upset conditions that would normally lead to unscheduled change-out, whether low S:C or poisoning
 - Allows increase in throughput up to limitations of burners and convection section
 - OPEX savings on fuel
 - Unique properties allow for CAPEX reduction in new plant designs through optimized furnace designs

Thank you!

Johnson Matthey Process Technologies

Diane Dierking 2 Transam Plaza Drive Suite 230 Oakbrook Terrace, IL 60181 (630) 268-6300

