Session II: Top Challenges Faced in Industry based Focus Groups

AIChE FDA Workshop on Adopting Continuous Manufacturing

Topic 2: Applicability of Continuous Manufacuring to a Diverse Pharmaceutical Portfolio

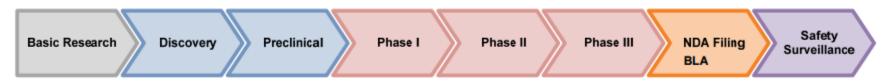
Draft 22/10/2015

What is a diverse pharmaceutical portfolio?

Drug Substance

- Therapeutic area
- Phase of Development
- Production volume
- Containment & potency
- Project timelines and acceleration (breakthrough status)

- Molecular complexity
- Variety of reagents / transformations
- Complex control strategy
- Rate of reaction
- Solid state form
- Physicochemical properties
- Bulk/powder properties


Drug Product

- Therapeutic area
- Phase of Development
- Production volume
- Containment & potency
- Project timelines and acceleration (breakthrough status)

- Route of administration
- Dosage forms / release profiles
- Unit dose strengths
- Manufacturing platform
- Combination products

What are the benefits & barriers of implementation of continuous processing?

Benefits

	DS	DP
Development Efficiency		
Design for continuous early	Χ	Χ
Expanded chemistry tool box	Χ	
Speed to delivery	Χ	Χ
Tech transfer to established platforms	X	X
Faster to commercial image		Χ
Decrease bridging risks with early adoption	X	X
Minimal development for scale up	Χ	Χ
Synergy between disciplines	Х	Х
Process Safety		
Increased heat transfer	Χ	
Reduce inventory of energetic material	Χ	
Containment of hazardous materials	Χ	Х
Minimize material in general	Χ	Χ

	DS	DP
Improved Control / Quality		
Assurance		
Real time analytical	Χ	Χ
Real time release	X ?	Χ
Reduction of unit operations	Χ	Χ
New tableting to minimize steps from		X
API to finished product		^
Modeling of continuous processes	Χ	Χ
Modeling process disruptions	Χ	Χ
Minimize cross contamination	Χ	
Minimize unit operations	Χ	Χ
Manufacturing Efficiency		
Post approval change control	Х	Х
strategies		^
Disposable equipment	Χ	
Reduce cycle time	Χ	Χ
Process intensification	Χ	Χ
Wider design space	X	X
mlnimize material at risk	X	X
end to end CM	Х	Х
Supply Chain		
Minimize inventory	Χ	Χ
Speed	Χ	Х

Barriers

	DS	DΡ
Lack of experience & uncertainty		
Resistance to doing something new	Х	Х
Competing cultures	Χ	Х
Project attrition	Χ	Χ
Dose uncertaintly		Х
Uncertainty in peak volume	Х	
Containment level	Х	Х
Process validation strategies	Х	Х
Organizational acceptance of models	Х	Х
Control / Quality Assurance		
Complex control strategy	Χ	Χ
Cohesive materials. System accumulation	Х	Х
Start up waste	Χ	Х
Diverting non conforming material	Х	Х
Analytical detection of low level impurities	Х	
Traceability	Χ	Χ
Lifecycle of equipment	Х	Χ

	DS	DP
Business Challenges		
What is the cost to go continuous?	Х	Х
Lack of infrastructure	Х	Х
Large existing batch infrastructure	Х	Х
Justifications for CM of low volume products	Х	Х
Underdeveloped external network	Х	Х
Lack of a powerful advocate	Х	Х
Multiple dev and manuf sites	Х	Х
Technical Challenges		
Feed rate limitations for low dose compunds		Х
Lack of scale down models for development	Х	Х
Solids dosing for DS	Χ	
DS / DP interface for end to end CM	Х	Х
Molecular Complexity	Х	
Underdeveloped external network	Х	Х

	DS	DP
Regulatory		
Regulatory buy in world wide	Х	Х
New technology in PAI	Χ	Χ
Fear of how to file what is a batch	X	Х
What is sufficient verification for models	Х	Х

Major Discussion Themes

- Supply Chain Assurance
- CM implementation earlier in development
- Business case for CM
- Is end-to-end CM realistic?

Supply Chain Assurance

- Potential benefits include speed, flexibility, portability and inventory control.
- Barriers discussed included:
 - CMO capabilities for CM
 - Equipment lifecycle / Robustness
 - Internal capacity and equipment limitations

CM implementation earlier in development

 Benefits included reduced parallel efforts, avoid bridging concerns, consistent impurity control strategies and speed.

→ Barriers

- ◆ Lack of alignment at the interfaces. Requires education and improved interactions between disciplines.
- ◆ Material availability. Do more with less! Requires better scale down equipment and predictive models.
- Project timelines and uncertainty

Business case for CM

→ Barriers:

- Lack of detailed ROI analysis for demonstrated CM processes in pharma.
- ◆ There are many publications on general economic advantages, but these lack the detail required to justify a real decision.
- Sensitivity to publishing development costs.
- Difficult to quantify many advertised CM advantages.
 - ◆ Value of improved quality assurance?

Opportunities

- Shared knowledge on defining the material properties that impact DP CM.
 - Many companies have individual efforts here.
 - Improved understanding could lead to earlier adoption, faster development and better process control.
- Push for publications on actual CM experiences.
 - ◆ True economic benefits, business cases, payback period, CapEx requirements, etc.
 - ◆ Examples of other CM advantages such as tech transfer, and improved QA.

