

Mapping Gut Microbiota Interactions that are Robust to *C. difficile* Strain Variability and Nutrient Landscapes

Jordy Evan Sulaiman

Ophelia Venturelli Research Group

University of Wisconsin-Madison

6th International Conference on Microbiome Engineering

Current C. difficile treatments

- *Clostridioides difficile* is an opportunistic human gut pathogen.
- Antibiotics inhibit *C. difficile*, but they disrupt the commensal gut community that provides colonization resistance.
- Fecal Microbiota Transplant (FMT) is an attractive alternative, but each FMT sample is bound to some level of uncertainty in terms of efficacy and safety.
- FMT can also unintentionally transfer antibiotic resistant bacteria or even other pathogens.

Lessa et al. (2015) N. Engl. J. Med., 372:825-834

U.K. Health Security Agency (2022) *Clostridioides difficile* infection: updated guidance on management and treatment

Well-defined communities to inhibit C. difficile

- These problems could be overcome using wellcharacterized microbial communities that have been standardized and optimized to inhibit *C. difficile*.
- However, there are variable successes in using defined consortia to treat *C. difficile* infection in clinical trials.

Gut check: Seres Therapeutics shares plunge after microbiome drug fails in trial

SHARE

in M

PUBLISHED FRI, JUL 29 2016-4:17 PM EDT | UPDATED FRI, JUL 29 2016-6:24 PM EDT

Roger Pomerantz, Seres Therapeutics

Berkeley Lovelace Ir.

Gap: Designing communities that are robust against *C. difficile* strain variation & nutrient environment

- *C. difficile* strains display extreme genetic variability and confront a changeable nutrient landscape in the gut.
- **Defined communities are less robust to environmental variability** than natural communities: Reduced richness, diversity, and functional redundancy.
- Previous studies that designed *C. difficile*-inhibiting consortia did not take into account **robustness towards strain variation and nutrient environment**.

FMT: >100 species

Defined communities: <10 species

C. difficile strains possessed highly diverse genome

C. difficile strains have highly diverse genome with substantial variation in metabolic genes.

Extent of metabolic niche overlap between human gut species and *C. difficile*

Based on monoculture growth profiles, *C. hiranonis* has the largest niche overlap of carbohydrate utilization with *C. difficile*. *C. hiranonis* can also utilize amino acids to perform Stickland metabolism, similar to *C. difficile*.

Workflow to study community interactions

Clark et al. (2021) *Nat. Commun.*, 12:3254 Venturelli et al. (2018) *Mol. Syst. Biol.*, 14:e8425

Human gut communities containing different *C. difficile* isolates display differences in interaction networks

In the glucose media that represents high resource competition, the interaction networks in the communities are enriched with **negative interactions (84-92%)**, and **all gut species inhibit** *C. difficile*.

Human gut bacteria infrequently inhibit *C. difficile* in the presence of preferred carbohydrates

The interaction networks in the mixed carbo media display a **higher frequency** of positive interactions. Of 7 diverse human gut species, only *C. hiranonis* displayed strong negative interactions with each *C. difficile* strain.

C. difficile growth in the Mixed Carbo Media vs. Glucose Media

The abundance of all *C. difficile* strains in communities was higher in the mixed carbo media.

C. difficile growth in the Mixed Carbo Media vs. Glucose Media

There's a strong negative dependence between *C. difficile* growth and species richness, but this is **much less apparent and even non-existent in the media with abundant resources for** *C. difficile* to consume.

Profiling *C. difficile* toxin production in communities

11

Profiling *C. difficile* toxin production in communities

Toxin production **is not correlated** with the inferred inter-species growth interactions.

C. hiranonis is the only species that **robustly inhibited both** *C. difficile* **growth and toxin production** of diverse *C. difficile* strains.

C. hiranonis massively altered C. difficile metabolism and toxin production

12

C. hiranonis massively altered C. difficile metabolism and toxin production

Due to their high metabolic niche overlap, *C. hiranonis* block *C. difficile*'s access to alternative resource niches and force them to undergo massive metabolic alterations, which also impact toxin production.

Adding other species in the community could enhance the inhibitory activity of *C. hiranonis*

Predicting Strong and Weak C. difficile-inhibitory communities

Computational model

Predicting Strong and Weak C. difficile-inhibitory communities

Computational model

Community inhibitory effects are consistent with computational model in germ-free mice ¹⁶

Community inhibitory effects are consistent with computational model in germ-free mice ¹⁶

Conclusion

- Human gut bacteria infrequently inhibit *C. difficile* in the presence of preferred carbohydrates.
- *C. difficile* toxin production in communities is not explained by growth-mediated inter-species interactions.
- *C. hiranonis* is a "universal" *C. difficile* growth and toxin inhibitor that is robust against strain variation and nutrient environment.
- Model predicted 3-member community containing *C. hiranonis* protects mice from *C. difficile*.

Come see my poster! (Session A, 5-6pm December 8)

Acknowledgment

Venturelli lab:

- Prof. Ophelia Venturelli
- Jaron Thompson
- Dr. Yili Qian
- Dr. Yu-yu Cheng
- Dr. Erin Ostrem Loss
- Dr. Claire Palmer
- Yiyi Liu
- Tyson Wheelwright
- Julie DuClos
- **Bryce Connors**
- Wenbo Lu
- Madeline Hayes
- Yifei Ren
- Eloi Martinez-Rabert
- Tyler Ross
- Wenxuan Dong
- Hanhyeok Im
- Job Grant

Venturelli lab alumni:

- Dr. Susan
- Hromada
- Dr. Jun Feng
- Dr. Freeman Lan

UW-Madison Hospital:

VENTURELLI

RESEARCH

Nasia Safdar

Mouse facility:

• Eugenio I. Vivas

- U.S. Army Research Labs
- DOE
- NSF

Sean Gibbons

Alex Carr

Christian Diener

U.S. DEPARTMENT OF

National