## Implications of Woody Bioenergy Feedstock Production for Water Supply and Hydrologic Regulation Services

Jose Antonio Gutierrez-Lopez, Julian Licata, Tom Pypker, Heidi Asbjornsen

# Introduction: Why should we care about bioenergy and water resources?

- Water scarcity quickly becoming the world's most critical issue for human well-being and ecosystem sustainability: UN "International Decade Water for Life 2005-2015"
- Growing global pressure to increase bioenergy crop production: major consequences for water resources, often not considered!
- Current understanding? Important knowledge gaps?





WATER FOR LIFE 2005-2015



#### **Background: The Water Cycle**



Streamflow (water yield) = Inputs - Outputs  $\pm$  Storage Q (WY)=P -E<sub>t</sub>+E<sub>i</sub>+E<sub>s</sub>+  $\Delta$ S + L

# Land use change (LUC) impacts on vegetation water use

- Forests <u>almost always</u> use more water compared to shrubs, grasslands, or crops.
  - Deep roots
  - Higher leaf area
  - Longer growing season





## What's so unique about (woody) bioenergy plantations vs. other types of LUC?

- Exotic species
- Rapid growth rates
- High planting density
- High leaf area index
- Short rotation length

Mature tropical rainforest

Few studies on woody bioenergy plantations and water use, but many similarities to other plantations

## Water Quantity: Transpiration

## Streamflow (water yield) = Inputs - Outputs $\pm$ Storage Q (WY) = P -E<sub>t</sub>+E<sub>i</sub>+ E<sub>s</sub>+ $\Delta$ (S+G) + L

Transpiration rates for exotic species often greater than native forests: Douglas-fir plantations vs. native *Nothofagusantartica*forests: Patagonia, Argentina





- Rooting depth and access to water
- Stomatal sensitivity to drought (conservative strategy)

Gyenge et al. 2008, 2009

## Rotation time for woody biomass crops may affect total water use: Conceptual model



 Woody biomass crops often have higher growth rates and leaf area indices, <u>but shorter rotation times</u>

Potential for higher total water use over time

Licata et al., unpubl.

#### Biomass crops often planted at high density: Modeled effects of high vs. low density on transpiration



Temperature change current, +2 C and +4 C

Biomass crops may be less resilient to future climate change

Licata et al., unpubl.

#### Water Quantity: Canopy Interception

## Streamflow (water yield) = Inputs - Outputs $\pm$ Storage Q (WY) = P -E<sub>t</sub>+E<sub>i</sub>+E<sub>s</sub>+ $\Delta$ (S+G) + L

#### **Canopy Interception (E<sub>i</sub>): Productive vs. non-productive water use**



(Licata et al., 2010)

•E<sub>i</sub>(usually) =non-productive water loss

•Throughfall = productive water use if infiltrated into the soil (if transpired by vegetation and not lost via runoff)

#### **Canopy Interception (E<sub>i</sub>): Patagonia** Morphological and structural traits of leaves and branches are critical determiningE<sub>i</sub>Losses



- Exotic pines had lower E<sub>i</sub> losses and higher soil water recharge than native cypress forests.
- Exotic pines had higher E<sub>t</sub> AND productivity.
- Species selection important!

Licata et al., 2010

**Exotic Ponderosa Pine** 

Native Cyprus

#### Water Quantity: ET and Streamflow

### Streamflow (water yield) = Inputs - Outputs $\pm$ Storage Q (WY) = P - E<sub>t</sub> + E<sub>i</sub> + E<sub>s</sub> + A(S+G) + L



## Establishing plantations on former (nondegraded) grasslands in South Africa:Effects on streamflow



- Trees have higher water use than grasses
- Streamflow reduced
- Effects observed sooner for eucalyptus vs. pine plantations

Scott et al. 1997

#### **Conversion of mature forest to eucalyptus plantations in New Zealand: Effects on streamflow**

Young rapidly growing plantations have higher transpiration rates than mature forest.

Streamflow reduced under eucalyptus during early stand development.

Streamflow returns to preconversion levels after 80-100 y

| 1415 | Age | Plottranspiration (mm/day) |  |
|------|-----|----------------------------|--|
|      | 14  | 2.2 mm                     |  |
|      | 45  | 1.4 mm                     |  |
|      | 160 | 0.8 mm                     |  |
|      |     | Roberts et al. 2001        |  |



## Water Timing (seasonal distribution)

Dry Season Flows: Critical for downstream hydrologic services!



- Watershed in Chile: 250 km2
  Approximately 50% of native forest converted to radiata pine plantations between 1978 and 1997
- Dry season streamflow reduced by 40%
- Greater water use during wet season by pines.

Little et al. 2009

#### Water Timing (seasonal distribution)

Can planting trees <u>on degraded soils</u> increase dry season streamflow?

- Net balance between the amount of increased water loss (due to increased ET) and gains in groundwater water recharge (due to increased soil infiltration rates).
- Key: soil hydraulic properties & recharge

#### Deforestation + soil degradation = higher annual streamflow but lower dry season flows



#### **Reforestation on degraded soils: balance between outputs (transpiration) and inputs (infiltration)**



Degraded red soils in humid SE China Annual P: 1,450 – 1,950 mm

 The "extra" water gained from infiltration (> 450 mm/year) exceeded the additional water used by trees (<300 mm/year).</li>



Zhang et al. 2004, Sun et al. 2006

#### **Pine Reforestation of Degraded Lands: Nepal**

Field saturated soil hydraulic conductivity



DP = Degraded Pasture (DP) FP = Foot Path (FP) PF = Pine Reforestation (PF) NF = Native Forest (NF)



 Pine reforestation did not improve soil hydraulic properties after 25 years.

Ghimire et al. 2013

## **Opportunities for managing biomass plantations for hydrologic services**

- Rotation length
- Stand density
  - planting
  - thinning
- Genetic improvement:
  - Productivity
  - Water use efficiency
- Species selection
- Species combinations

#### Current Research: Effects of bioenergy production on water supply and hydrologic services?

Reference Systems

#### Palm oil: Mexico & Brazil

Eucalyptus: Argentina

Aspen: WI, USA

## **Acknowledgements:**

## **Funding: NSF-PIRE, NSF-RCN**

## **Obrigado! Obrigada! Perguntas?**

