Biogeochemical Research Priorities for Sustainable Bioenergy Feedstock Development in Pan-America

H. Gollany¹, B. Titus², D.A. Scott³, H. Asbjornsen⁴, S. Resh⁵, R. Chimner⁵, A., D. Kaczmarek⁶, L. Leite⁷, A. Ferreira⁷, K. Rod⁸, J. Hilbert⁹, M. Galdos⁷ and M. Cisz⁵

- ¹ USDA Agricultural Research Service, OR, USA
- ² Natural Resources Canada, Canadian Forest Service
- ³ USDA Forest Service, AL, USA
- ⁴ Natural Resources & Environment. University of New Hampshire, NH, USA

- ⁵ Forest Resources & Environmental Sciences,
- Michigan Technological University, MI, USA
- ⁶ USDA Forest Service (ret'd), Aiken, SC, USA
- ⁷ EMBRAPA, Brazil
- ⁸ Washington State University, USA
- ⁹ INTA, CIA, Buenos Aires, Argentina

RCN Conference on Pan American Biofuels & Bioenergy Sustainability Recife, Brazil, 22-25 July 2014

Canada

Soil and nutrient cycling principles are universal but operate at local (site) level within the landscape

- Local soils, sites/ecosystems, climate
- Local feedstock type (demand on soil reserves; quality of OM input)
- Local management practices (including intensity)

Pedro Martin Ureta's farm, nr General Levalle , Cordoba, Argentina; whudat.de

Physical properties

• Reduced OM \rightarrow reduced soil aggregate size

bulk density ↑ → rooting ↓ nutrient uptake ↓ water repellency ↑ → sorption ↓ erosion ↑

- Few studies on aggregates in forestry (exception: Lupi et al. 2007.
 - Lupi AM, Conti M, Fernández R, Cosentino D, López G. 2007. Efecto de las prácticas de repoblación forestal sobre el carbono orgánico del suelo y la estabilidad de los agregados en el noreste de Argentina. *[Effect of reforestation practices on soil organic carbon and aggregate stability in northeastern Argentina. In Spanish with English abstract.]* Investigación Agraria: Sistemas y Recursos Forestales 16:230–240)

Physical properties

- Reduced OM \rightarrow reduced soil aggregate size
- Roadbed for equipment (mostly forestry)
 - Reduces rutting (erosion) and compaction

Physical properties

- Reduced OM \rightarrow reduced soil aggregate size
- Roadbed for equipment (mostly forestry)
 - Reduces rutting (erosion) and compaction
 - But compaction in forestry can sometimes increase productivity (soil water-related?)
 - Long-Term Soil Productivity (LTSP) network in Canada & US: benefit of collaborative networks with common research designs (see Eric Vance, on Steering Committee)
 - (See also CIFOR network in tropics and sub-tropics)

Physical properties Biological properties

Reduced OM

reduced earthworms, fungal growth, microbial community structure and function, below-and above-ground saproxylic organisms (and larger above-ground organisms)

affects decomposition and biogeochemical cycling processes in soil

Physical properties Biological properties

- Chemical properties
- OM removal \rightarrow reduced nutrient availability
 - Loss of nutrient capital in removed OM
 - Changed dynamics (pH, CEC, electrical conductivity)

In forestry, OM can be "friend or foe" (Prescott et al. 2000)

Hazlett, P.; Morris, D.; Fleming, R.L. 2014. Effects of biomass removals on site carbon and nutrient retention and jack pine tree growth across a site productivity gradient in upland boreal forests of Ontario. 2014. Soil Science Society of America Journal.

Prescott CE, Maynard DG, Laiho R (2000) Humus in northern forests: friend or foe? For. Ecol. Manage. 133:23–36

What are the biomass retention thresholds that sustain soil properties and functions for different combinations of crops, management systems, sites and soils? (this threshold interacts with biodiversity threshold)

Nutrient management

- Chemical fertilization
 - Fertilization ≠ OM retention
 - Fertilization + OM retention → improve both yield & soil quality

Pendleton Plots, OR

60- to 70-year data for winter wheat, with fallow

Nutrient management

- Chemical fertilization
 - Fertilization ≠ OM retention
 - Fertilization + OM retention → improve both yield & soil quality
 - Forest Stewardship Council (FSC): discourages forest fertilization in some countries/regions
- Conserve P ("peak phosphorus")
- Ash from bioenergy production
 - If addresses limitations; lacks N and P; can be toxic
- Biochar
 - Outcomes variable; not all biochars are created equal
 - Need strategic research approach to elucidate mechanisms (Jeffery et al. 2011)

Nutrient management

- What nutrient management/amelioration practices are economically and environmentally sustainable?
 - How do we better define "precision" agriculture/ agroforestry/forestry to minimize fertilizer use?
 - How do we optimize nutrient availability and plant uptake while conserving OM (and P)?
 - On which sites does addition of ash or biochar increase soil productivity/long-term soil C sequestration?

Process-based models

In the absence of long-term data, reliable models would help us predict the future (within limits)

- Long-term results can be very different from short-term results
- Field trials for generating long-term data can be expensive to maintain
- Current models have varying degrees of predictive capability

How can we improve models for predicting longterm soil impacts of biomass removals?

- GHGs: CO₂, N₂O (nitrous oxide) and NO_x
 - Decomposition \rightarrow CO₂ (soil respiration)
 - Increase biomass growth (including fertilization) → increase CO₂ sequestration
 - Fertilization \rightarrow 69% of U.S. N₂0 emissions
 - N₂0 is 200-300x more potent (per-molecule) than CO₂
 - (Much less of a problem in forestry)

- GHGs: CO₂, N₂O (nitrous oxide) and NO_x
- Eutrophication
 - >400 eutrophication-associated hypoxic "dead zones" in oceans (245,000 km²)
 - (But 1 million km² natural hypoxic zones; Helly & Levin 2004)
 - Optimal fertilization ("precision" management)
 - Reduce leaching/run-off with SRWC, perennial grasses in boundary areas

- GHGs: CO₂, N₂O (nitrous oxide) and NO_x
- Eutrophication
- Sedimentation
 - Erosion (OM, topography, soil disturbance)

- GHGs: CO₂, N₂O (nitrous oxide) and NO_x
- Eutrophication
- Sedimentation
- Waste disposal
 - Ash
 - Biochar

- GHGs: CO₂, N₂O (nitrous oxide) and NO_x
- Eutrophication
- Sedimentation
- Waste disposal

- *How can we reduce off-site impacts?*
- How can we use "waste" products to increase growth (if this does not cause other problems)?

Soil sustainability indicators

- Qualitative (±) and quantitative indicators of soil "quality" and function
- Land management
 - Site-level prescriptions
 - Landscape-level planning
- LCA
 - If metric can be scaled spatially and temporally
- Governance
 - Guidelines, BMPs, regulations, policies
- Markets
 - Certification
 - Trade (import regulations)

Soil sustainability indicators

Suggested indicators include (McBride et al. 2011):

- Total organic C and N
- Extractable P
- Bulk density
- Stream concentrations of NO₃, P, suspended sediments
- GHG emissions
- productivity

Soil sustainability indicators

- Which soil indicators are
 - Scientifically valid, operationally feasible, and affordable?
 - Universal vs. crop- or site-specific?
- How can we aggregate multiple indicators?
 e.g., C vs. C + N vs. C + N + base cations
- How can we scale up spatially?
 - feedstock supply chains \rightarrow investor confidence, policy
 - LCA \rightarrow soil impacts in context of entire supply chain

Suggested biogeochemistry research strategies

- Long-term field trial remeasurements
 - Comparative studies of old field trials
 - Money cannot buy time
- Collaboration increases value: "multi-" principle
 - Multi-feedstocks, -disciplinary, -agency, -national
- Build networks of new trials addressing emerging issues with coordinated common designs and measurements
 - Shared insight, more efficient, better comparisons, statistically stronger meta-analyses
 - E.g., CIFOR, LTSP, etc.
- Strategic syntheses, reviews, meta-analyses, "thought" articles

Suggested biogeochemistry research strategies

- Link research networks to bioenergy operations
 - Operators install plots as they go
- Scale up from site to landscape level
 - (Weyerhaeuser; Eric Sucre)
- Comparative case studies integrating biogeochemical research with other disciplines and industry
 - (e.g., PIRE)
- Balance research funding opportunities within bioenergy sector
 - Technological research with (not at cost of) sustainability research

Obrigado! Gracias! Merci! Thank you!