BIOFUEL SUSTAINABILITY IN LATIN AMERICA & THE CARIBBEAN – A REVIEW OF RECENT EXPERIENCES

Robert Bailis¹, Barry Solomon², Chrstine Moser³, Tina Hildebrandt⁴ ¹Yale University, USA ²Michigan Technological University, USA ³Leuphana Universtat, Germany ⁴EDEKA - Germany

Prepared for the Conference on Pan American Biofuels and Bioenergy Sustainability, Recife, Brazil, 22-25 July 2014

Introduction

Vast majority of biofuel production in Latin America & Caribbean (LAC) derived from well established farm sectors with inequitable land distribution & land use

Doubts raised about biofuel sustainability in LAC for these reasons, plus many other issues e.g. food insecurity, water pollution, GHG emission, labor rights violations, etc.

Introduction - cont.

 Globally there's been proliferation of biofuel mandates & blending targets, tax exemptions, other subsidies, etc. encouraging more ethanol & biodiesel production

Also encouraged are use of new feedstocks, & use of "marginal" or "degraded" lands"

We'll review these trends + governance mechanisms for sustainability, implementation, how to address challenges to sustainable production, + directions for future research

National Biofuels Policy Objectives

- In LAC today there are several policy objectives for biofuels development; 10 are widespread plus an 11th in 2 countries only:
 - energy security/rural energy access;
 - gain competitive advantage/new markets;
 - stimulate economic growth;
 - promote rural development;
 - strengthen or diversify farm sector

Policy Objectives

- job creation
- reduce poverty/social inclusion/improve rural life (less countries)
- mitigate climate change/join carbon markets
- protect the environment more generally
- avoid impacts on food security (less countries)
- create alternatives to illicit drug cultivation (Colombia & Peru only)

Governing Biofuel Sustainability in LAC & Role of Export Markets

- Governance mechanisms introduced by wide range of actors → national & sub-national governments, intra & supra govt. orgs, private corporations, civil society actors
- Mechanisms: policies, regulations, voluntary certification schemes, sustainability standards, meta standards, codes of conduct
- may be single issue or comprehensive

Governance cont.

US & EU major biofuel export targets from LAC

- US requires greater GHG reduction from biofuel (2007) imports, and transportation fuel providers in Calif.
- EU passed Renewable Energy Directive (RED) in 2009 to mandate 10% renewable transport fuel; must reduce lifecycle GHG emissions, avoid high bio-diverse lands, lands with high carbon stocks, peatlands → incentives to produce on severely degraded or heavily contaminated lands

- European Commission (EC) monitors implementation

Governance cont.

- 14 international biofuel sustainability standards accepted by EC; 6 adopted in LAC:
 - Roundtable on Sustainable Biomaterials (RSB)
 - Int. Sustainability & Carbon Certification (ISCC)
 - Biomass biofuel, sustainability voluntary scheme (2BSvs)
 - Round Table on Responsible Soy (RTRS)
 - Roundtable on Sustainable Palm Oil (RSPO)
 - Bonsucro (sugarcane feedstock)

Governance cont.

- also: Inter-American Development Bank *Biofuels Scorecard*; Global Bioenergy Partnership 24 sustainability indicators, pilot tested in Colombia; ISO developing voluntary bioenergy sustainability criteria (Brazil & Germany cooperation ref. Maggie's talk)
- Schemes usually have multiple criteria & indicators to demonstrate compliance, and have involved multiple stakeholders across supply chain
 social issues often downplayed or are weak

Status of Sustainability Standard Adoption in LAC

- Voluntary biofuel project certification gaining traction in LAC, incl. qualifying standards for RED
- based on nation by nation review, as of July 2014: 315 certificates in Brazil, 88 in Argentina, 9 in Paraguay, 6 in Guatemala, 5 each in Colombia & Uruguay, 4 in Costa Rica, 3 each in Peru & Nicaragua; 2 each in Chile & in Mexico
 - most popular schemes: RTRS, 2BSvs, ISCC, Bonsucro; only a few have adopted RSP, RSB

Standard Adoption cont.

- Biggest surprise → few takers of RSB standards, which are most detailed & comprehensive, had very widespread stakeholder input worldwide, thus high awareness among practitioners
 - 12 principles, 35 criteria, 200 indicators!

the popular 2BSv (industry led), in contrast, only requires applicants meet RED minimum criteria in order to access profitable EU biofuel markets

Standard Adoption cont.

ISCC scheme covers similar range of criteria as RSB but has seen much higher uptake rate

main difference between ISCC & RSB: ISCC had less stakeholder involvement in standard setting & governance, & has fewer criteria & indicators to comply with, thus probably less burdensome

 overall: cost of achieving certification gives strategic advantage to large-scale industrial firms vs. small-scale producers

GHG Emissions & Land Use Change

- GHG reduction targets set in USA & EU; incorporated into many certification schemes, though specific reduction targets not set in LAC
- GHG reduction estimates vary widely due to different assumptions & methodologies
- sugarcane can reduce emissions 80-90%, palm 35-90%, jatropha 30-60%, soy 50%, or much less
- however actual emissions reduction may be less due to dLUC (direct land use change) & iLUC (indirect)

GHG Emissions & Land Use Change

- dLUC results from feedstock cultivation displacing natural vegetation
- iLUC results if biofuel feedstock affects commodity markets in ways that induce LUC elsewhere
- however: dLUC can be positive, eg perennial crops planted on degraded pasture lands may increase C
- most sustainability schemes *acknowledge* iLUC, but only the US EPA & CA incorporate it, and have been subjected to legal challenges

Water Accessibility & Quality

- large scale farming production can have large impacts on nearby communities (incl. evapo-transpiration & irrigation, eg Colombia), from water demand for feedstock production & processing, plus runoff or pollution from refining
- fertilizer & pesticide use high in LAC
- salts from cooling towers & boilers must be discharged
- ethanol also discharges vinasse waste, though Brazil increasingly using it for ferti-irrigation in cane fields

Food Security

- occurs through *indirect* impact of biofuels on global markets, effecting prices of staple grains & oils
- in 2007-08, e.g. biofuel expansion may have added 20-40% to increased price of staple foods, *but*: many other factors account for more
- ethanol production from maize? Little such production in Latin America, but Mexico & Colombia are major importers, thus backlash (Mexican 'tortilla crisis' & backlash in 2007)

Food Security

- factors within LAC countries are relevant in even less direct ways
- while soy & sugar are not really staple foods, expanded cultivation for biofuel could displace land used for food crops, mainly affecting local communities
- among the 6 biofuel certification schemes adopted in LAC, only ISCC & RSB have food security criteria, and for ISCC isn't a core criterion

Land Tenure Issues

- generations of unequal land ownership in the region have resulted in some of the highest such land & wealth disparities in the world, + conflict/violence
- most biofuel production highly concentrated, not helping the rural poor
- sugarcane & soybean production highly concentrated, e.g. in Brazil ~70% of cultivation done by 340 largescale mills, w/avg. holding of 30,000 ha

Land Tenure Issues

- result of inequities has been social reform movements, via Via Campesina (global movement of peasants & small farmers w/roots in Central America, & Brazil's Landless Rural Workers' Movement (MST in Portuguese) → some opposition to biofuels
- most sustainability standards have land rights provisions, but rely largely on existing law & international treaties protecting indigenous rights; 2BSv doesn't mention land tenure & not a *core* criterion for Bonsucro; RSB goes further but few use it

Conclusions/Future Research

- many social/environmental concern accompanied rapid biofuel development in LAC
- 400+ feedstock cultivators in region certified as "sustainable" operations
- unclear if this means real sustainability in LAC, or simply market savvy businesses "green-washing" their operations in order to access foreign markets in EU & USA
- active monitoring & impact evaluation needed to determine true sustainability of biofuel operations

Conclusions/Future Research cont.

- too early to say if sustainable biofuel certification schemes in LAC (esp. ISCC, Bonsucro, RTRS) are strong enough to safeguard against adverse environmental & social effects
- additional mechanisms besides these voluntary certification schemes needed, e.g. make more schemes RED eligible & make it more rigorous?
 - regional cooperation could facilitate this
- also need for greater incorporation of social movements & their concerns into biofuel sector