

Biodiesel Production from Used Cooking Oil using Calcined Sodium Silicate Catalyst

M.O. Daramola, <u>D. Nkazi</u>, K. Mtshali School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa

RCN Conference on Pan American Biofuels and Bioenergy Sustainability, Brazil, July 22-25, 2014

Motivation

Sources: Guo et al, 2012; Aransiola et al., 2012; Sivozhelezova et al, 2009; Papayannakos, 2013; Li et al, 2014; Cheah et al, 2009

Conversion of waste to useful product such as Biodiesel

- Homogeneous catalysts give very high conversion for biodiesel production but the consumption and recovery of the catalyst constitute a challenge
- Enzymatic conversion is promising but huge cost of enzyme and separation of product pose a challenge

The use of heterogeneous catalyst has eliminated equipment corrosion and waste water discharge, and appear to be the most promising and sustainable processes

Need to develop heterogeneous base catalyst for the production of biodiesel with higher tolerance for FFA's content in the feedstock

Research Questions

What could be the conversion yield of biodiesel obtained from Used (waste) Cooking (UCO) Oil over sodium silicate catalyst?

What is the effect of reaction time and temperature on the conversion?

Objectives

- Synthesize and characterize sodium silicate catalyst
- Evaluate the FFA content of the UCO sample before the production of biodiesel
- Use the prepared catalyst for biodiesel production from UCO
- Investigate the effect of reaction temperature and reaction time on the conversion

Biodiesel from used cooking oil Source: Green Cape, 2013

New SA regulation to kick in on the 1st of October 2015

Fuel producers will be required to blend a minimum of 5 percent biodiesel with diesel fuel

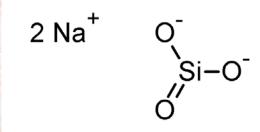
Challenges:

SA UCO market: poor supplier

 Transportation effect of UCO over long distances on the system's sustainability.

Renewable energy of South Africa Source: Green Cape, 2013

Status of Biofuel in October 2013


Company Name	Crop / Feedstock	Capacity (million litres/yr)	Location	Licence status		
BIOETHANOL						
Mabele Fuels Sorghum 158 Bothaville, FS Issu						
Ubuhle Renewable Energy	Sugarcane	50	Jozini, KwaZulu Natal	Issued		
E10 Petroleum Africa cc	Sugarcane and other crops	4.2	Germiston, Gauteng	Granted		
ARENGO 316 (Pty) Ltd	Sorghum and sugar beet	180 (in two phases of 90 each)	Cradock, Eastern Cape	Granted		
TOTAL BIOETH	ANOL CAPACITY	392.2				
	В	BIODIESEL				
Rainbow Nation Renewable Fuels	Soya Bean	288	Port Elizabeth, Eastern Cape	Issued		
Exol Oil Refinery	Waste Vegetable Oil	12	Krugersdorp, Gauteng	Granted		
Phyto Energy	Canola	>500	Port Elizabeth, Eastern Cape	Applying for licence		
Basfour 3528 (Pty) Ltd	Waste Vegetable Oil	50	Berlin, Eastern Cape	Granted		
TOTAL BIODIESEL CAPACITY		850		ł		

Sodium Silicate Catalyst

Sources: Dai et al, 2010; Guo et al, 2012

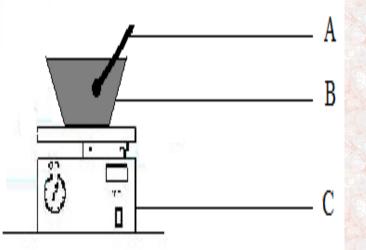
The use of heterogeneous catalyst showed higher tolerance of FFA

Sodium silicate as transesterification catalyst has higher catalytic activity after calcination

Hydrolysis reaction suppresses the formation of soap and decrease water content

Biodiesel production: Transesterification

Source: Schuchardt et al, 1998


$H_2C - OCOR'$ HC - OCOR" + HC - OCOR" + H_2C - OCOR"	3 ROH	catalyst	ROCOR' + ROCOR'' + ROCOR'''	+	$H_2C - OH$ HC - OH HC - OH H_2C - OH
triglyceride	alcohol		mixture of alkyl esters		glycerol

Reaction for transesterification

Experimental Procedure

1. Catalyst preparation

NaOH + H_2O SiO₂

Mixing at constant Calcination temperature 200/350 °C

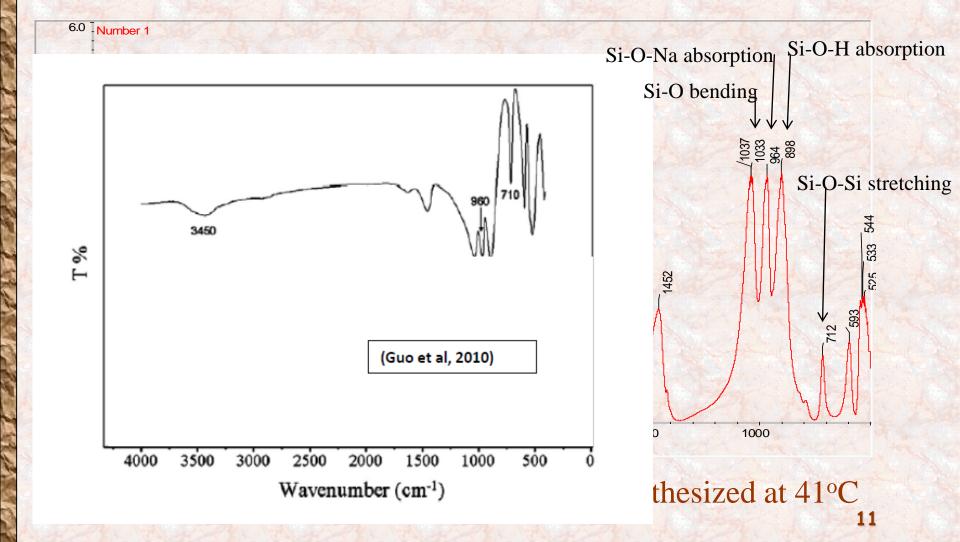
Catalyst Preparation Experimental Set-up

A: spatula used to ensure the uniform mixing of reagents, B:steel bowl used to perform the reaction and C: magnetic heater and stirrer, used to obtain the required reaction temperature.

Experimental Procedure

Biodiesel production over the catalyst

The equipment used in the transesterification setup is a Liebig condenser that is connected to a running tap.


Na₂SiO₃ (2.51 g) + Methanol (214.3 ml)

WCO (35.7 ml)

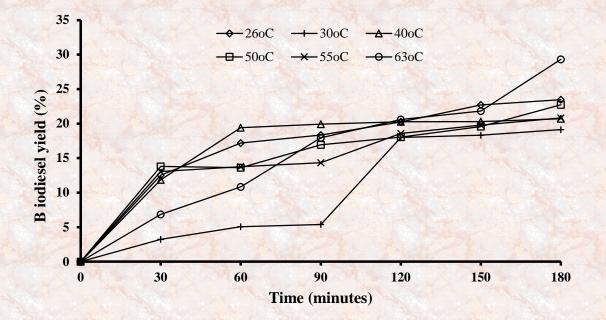
Reaction at varied Temperature (25-70°C) and time (0-180 minutes) Under continuous stirring

Catalyst Characterization

UCO Characterization

Physico-chemical characteristics of the UCO

Moisture	High heating value	Melting point (°C)	Specific
content (%)	(MJ/kg)		gravity
<0.05	40	30	0.87


FFA Content of the UCO

The number of titrations conducted along with the volume of titrant used for the solution to reach end-point. (Titration method used by Ding et al (2012))

Volume used (ml)	
1.7	
1.95	
1.9	
1.8	
1.8375	
↔ FFA % = 1.41 % > 1 %	
0.115	
900	

Effect of Time & Temperature

Biodiesel yield as function of reaction temperature and reaction time

14

Effect of Time & Temperature

Jield of fatty acid methyl esters (FAME) during the reaction increased with time and about 30% FAME was obtained after 180 minutes and at reaction temperature of 63°C. The increase in FAME yield at increasing reaction time is consistent with results from previous research efforts on the use of a homogeneous catalyst (NaOH) for the conversion of Jatropha Curcas oil seeds and palm oil to biodiesel (Aransiola et al, 2012 & 2013; Alamu et al, 2008) and on the conversion of WCO to biodiesel over RHC-SO₃H and Ambertyst-15 catalysts (Li et al, 2014). Increase in the yield of FAME at increasing reaction time, and reaction temperature could be attributed to the kinetics of the reaction.

Results Compared with Literature

Catalyst	Nature	Reaction T (°C)	Reaction Time (h)	Methanol/o il ratio	BD yield (%)	Ref.
Ambertyst-15	acid	110	3	20:1	~25	Li et al, 2014
RHC-SO ₃ H	acid	110	3	20:1	42	Li et al, 2014
Na ₂ SiO ₃	base	63	3	6:1	30	This study

Results Compared with Literature

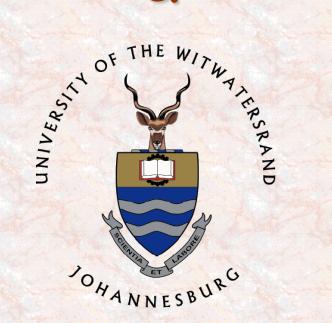
Based on the same reaction time scale, the yield of FAME obtained in this study was about 5% higher that the FAME yield obtained for Ambertyst-15 catalyst. However, the performance of our catalyst in terms of the yield of FAME is lower than that of RHC-SO₃H catalyst by about 12%.
The lower reaction temperature and lower methanol-to-oil ratio at which transesterification was conducted in this study could explain the lower performance of our catalyst when compared to RHC-SO3H.

□ Since reaction rate increases with increasing temperature, it is expected that increase in reaction temperature beyond 63°C in this study might enhance the yield of FAME beyond 30% while keeping the time and the methanol-to-oil ratio the same.

□ Solid sodium silicate catalyst was synthesized and evaluated for biodiesel synthesis from UCO.

□ Results show that the calcined Na_2SiO_3 catalyst is able to convert UCO to biodiesel at mild temperature. The results also compare well with literature

□ More in-depth studies on the characterization, activity, and the kinetics of the catalyst in transforming UCO to biodiesel to improve the yield of FAME are on-going in our lab.


□ At the same time, improvement of the synthesis protocol of the catalyst via optimization study is essential to improving the activity of the catalyst.

Evaluation of performance stability and optimization of the transesterification operating conditions are essential to achieving optimized process.

Acknowledgments

Wits FEBE Top-slice Grant

Thank You for Your Attention

