
RCN Conference on Pan American Biofuels & Bioenergy Sustainability Golden Tulip Recife Palace, Recife, Brazil July 22-25, 2014

Life cycle assesment study on a soybean complex transformation chain over three years of production of biodiesel as a coproduct

Sustainability criteria (Article 17 – EU Directive) (1)

palm oil biodiesel (process not specified)

36 %

19%

Green House emitions Frias Plant Santiago del Estero

Objetive of the work

MAIN OBJETIVE

Perform a complete inventory of GHG ivolved in the production and conversion of soybeans in Frias Plant Follow up this study over three years in order to capture interanual variations

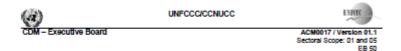
First research core team

Technical seminars

Starting Implementation

Methodological tools used

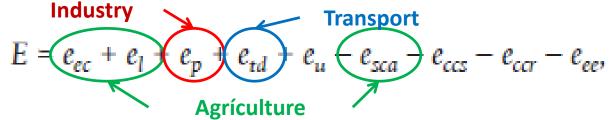
2006 IPCC directives for national GHG inventories


EB 50 – Executive MDL board "Guidelines on apportioning emissions from production processes between main product and co-and by-products ".

Annex 12

GUIDELINES ON APPORTIONING EMISSIONS FROM PRODUCTION PROCESSES BETWEEN MAIN PRODUCT AND CO- AND BY-PRODUCTS

ACM0017 Methodology "Approved consolidated baseline and monitoring methodology Production of biodiesel for use as fuel".

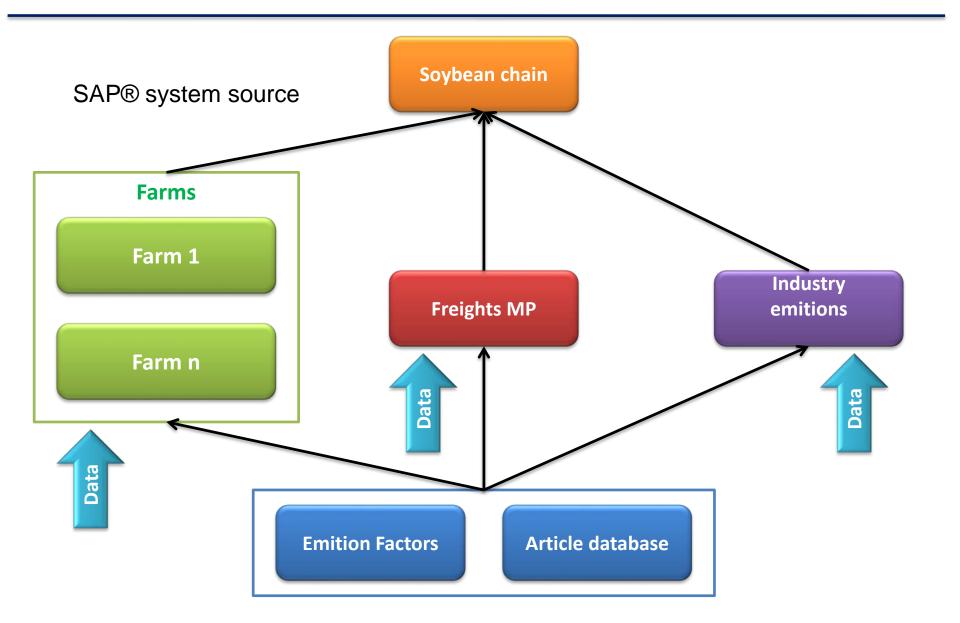


Approved consolidated baseline and monitoring methodology ACM0017

"Production of biodiesel for use as fuel"

DIRECTIVE 2009/28/CE European Union Parliament and council April 23 2009

Anexo V Directive EU-RED



- E Total emissions from the use of the fuel (soybean based biodiesel)
- E_{ec} <u>Emissions from the cultivation raw material (soybean)</u>
- e₁ <u>Annualised emissions from carbon stock changes caused by land-use change</u>
- e_p <u>Emissions from processing</u>
- e_{td} Emissions from transport and distribution
- e_u Emissions from the fuel in use
- e_{sca} <u>Emission savings from soil carbon accumulation via improved agricultural</u> <u>management</u>
- $\mathbf{e}_{\mathrm{ccs}}~$ Emission saving from carbon capture and geological storage
- e_{ccr} Emission saving from carbon capture and replacement;
- e_{ee} Emission saving from excess electricity from cogeneration

Anexo V concepts included in the study

	Concepto	Incluido			
e _{ec} =	Emissions from the cultivation raw material (soybean);,	Yes			
e _l =	Annualised emissions from carbon stock changes caused by land-use change,	No Assumption of no change in carbon stoks in soils since January 2008.			
e _p =	Emissions from processing	Yes			
e _{td} =	Emissions from transport and distribution emissions	Yes			
e _u =	Emissions from the fuel in use	No Europen Directive - Anex V - Páragraph 13:Emissions from the fuel in use, eu, shall be taken to be zero for biofuels and bioliquids			
e _{sca} =	Emission savings from soil carbon accumulation via improved agricultural management,	No No changes in carbon stoks due to agricultural practces			
e _{ccs} =	Emission saving from carbon capture and geological storage,	No There are not any geological storage in place.			
e _{ccr} =	Emission saving from carbon capture and replacement	No No biomass is used for fossile fuel replacement.			
e _{ee} =	Emission saving from excess electricity from cogeneration	No No electricity is generated.			

Emition calculator

Farm model

N₂O

CO₂

Fuels

CO₂ CH₄

Farms 2

Farm n

Crop residues Fertilizers Fuel and lubricants Fertilizanters production Fuel and lubricants production

N₂O

CH4

CO

Fuel burning

A State of the second

Insumes production

Harvest residues/Fertilizers

1. Emissions from the extraction or cultivation of raw materials (e_{ec})

Art. 6:, eec, shall include emissions from the extraction or cultivation process itself; from the collection of raw materials; from waste and leakages; and from the production of chemicals or products used in extraction or cultivation. Capture of CO2 in the cultivation of raw materials shall be excluded. Certified reductions of greenhouse gas emissions from flaring at oil production sites anywhere in the world shall be deducted. Estimates of emissions

- N in agriculture residues, including N fixing crops & return of forage/pastures to the soil
- N suplied to the soil artificially.
- CO₂ coming from Urea use.

Agriculture module

- CO₂ coming from fossile fuel employed
- Emissions associated to the life cycle of fertilizers and fossile fuels

Raw material transport (CO₂ generated by fossile fuel use)

1.1 - N from agriculture residues

DATA SOURCE

Crop type Production field Field surface Method Chapter 11 - Volume 4 IPCC 2006 Guides Level 1 Direct and indirect sources

CALCULATION FLOW

- Step 1: Yield of the crop Kgs/hectare.
- Step 2: Use of equation 11.7 to calculate N of Agricultural residues Cálculo del N de residuos agrícolas, (F_{CR})
- Step 3: Calculate direct emissions by using equation
 11.1 of the table 11.1.
- Step 4: Calculate the indirect emissions by lixiviation using equation 11.10 of the table 11.3.

1.2 – Synthetic Fertilizers

DATOS USED Quantity Type of fertilizer Composition

Methodology according to chapter 11 volume 4 of the IPCC 2006 guide - Level 1.Emition sources "Direct" & "Indirect x Deposition in the atmosphere and lixiviation" & CO₂ by the use of urea and derivates

PROCEDURE

- Step 1: Calculate the ammount of synthetic fertilizers applied (FSN) according to type and composition.
- Step 2: Calculate the direct emissions by using equations 11.1 from the table 11.1
- Step 3: Cálculate the indirect emitions by atmosphere deposition by using equation 11.09 and table 11.3.
- Step 4: Calculate the indirect emissions through lixiviation using equation 11.10 & table 11.3.
- Step 5: Calculate the equivalent urea quantity applied (FUREA).
- Step 6: Calculate the CO2 emissions by urea use using equation 11.3

1.3 – Fuel & lubricants

DATA USED Type of field work Quantity Emisions $(CO_2-N_2O-CH_4)$ associated to the fuel burning for all the field operations preparation, planting, fertilizer and herbicides and harvesting

PROCEDURE

- Step 1: Estimation of fuel and lubricant consumption by converting each field operation for surface to liters of fuel and lubricants. All operations in Viluco are outsorced with specific contractors. Mean numbers are used..
- Step 2: Calculate the direct emissions multiplying the liters by the emission factor

1.4 – Fertilizantes production

DATA USED Quantity Type of fertilizer

"A Review of Greenhouse Gas Emission Factors for Fertiliser Production. Sam Wood and Annette Cowie Research and Development Division, State Forests of New South Wales. Cooperative Research Centre for Greenhouse Accounting - For IEA Bioenergy Task 38 - June 2004"

Produc t	Country	Composition		g CO _{2-e}	Reference	
		N:P:K	per kg N	per kg Product	CO ₂ :N ₂ O:CH ₄	
Urea	Europe Average	46:0:0	4018.9	1848.7	97.5:0.1:2.3	Davis and Haglund (1999)
Urea	Europe Average	46:0:0	1326.1	610.0	-	Kongshaug (1998)
Urea	Europe: Modern Tech.	46:0:0	<mark>91</mark> 3.0	420.0	-	Kongshaug (1998)
Urea	Europe	46:0:0ª	1707.3	785.4	-	Kuesters and Jenssen (1998)
UAN	Europe	32:0:0ª	3668.0	1173.8	36.6:63.4:0.0	Kuesters and Jenssen (1998)
UAN	Europe Average	32:0:0	5762.9	1844.1	59.1:39.5:1.4	Davis and Haglund (1998)
UAN	Europe Average	32:0:0	4093.8	1310.0	-	Kongshaug (1998)
UAN	Europe Modern Tech.	32:0:0	2000.0	640.0	-	Kongshaug (1998)
	position from Kongs gures in italics are o		sed on % N	l composition.		

PROCEDURE

Step 1: Multiply the quantity of fertilizers by the corresponding emission factor.

1.5 – Production of fuels and lubricants

DATA SOURCE Quantity "Approved consolidated baseline and monitoring methodology ACM0017 "Production of biodiesel for use as fuel" - v.01.1 - UNFCCC - CDM Executive Board".

ID Number:	9
Parameter:	EF _{PROD}
Data unit:	tCO ₂ e/t petrodiesel
Description:	Emission factor for production of crude oil
Source of data:	-
Value to be	The emission factor for the production of crude oil (EF _{PROD}) to be used in equation
applied:	1 is 0.073 tCO2e/t petrodiesel ¹⁰ A global value was calculated with the
	assumption that that upstream emissions with respect to crude oil production in
	Annex I countries is zero
Any comment:	-

ID Number:	10
Parameter:	EF _{REF}
Data unit:	tCO ₂ e/t petrodiesel
Description:	Emission factor related to oil refinery
Source of data:	-
Value to be applied:	 The emission factor related to oil refinery (EF_{REF}) shall be one of the following: a) In the absence of a country-specific data, a global average figure of 0.233t-CO2/t-petrodiesel can be used.¹¹ b) If refining occurs in the host country, reliable local emission factors from an official information source (e.g. national communications) may be used instead of the default emission factor
Any comment:	-

CALCULATION

 Step 1: Multiply the quantity of fuels and lubricants by the corresponding emission factor.

1.6 – Farm structural costs / no productive fields

Common Energy emitions for all the farm operations in order to maintain all plots without production including fertilizer and agrochemical use.

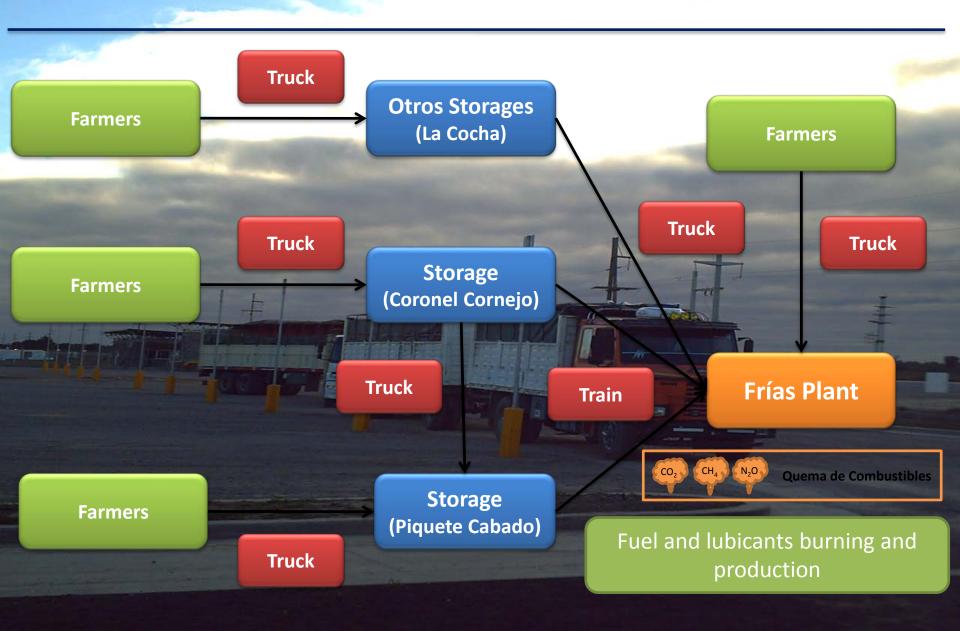
DISTRIBUTION

 Total emitions are assigned according to the physical production of each crop, in order to assure a fair distribution between all the farm emitions associated with production.

Summary per field emissions

RESUMEN EMISIONES DE GASES DE EFECTO INVERNADERO

Resumen Abastecimiento de Materias Primas de Campos Propios - SOJA


2010-2011

		1280	Arbolito	Cabeza de Caballo	Las Marias	Los Guayacan	Pozo de la Espuela	Rancho Grande	San Jorge	Sara	Total
	Superficie (Hectáreas)	380	1.834	1.203	2.697	1.840	5.168	4.696	682	987	33.382
Producción Soja	Produccion (Toneladas)	1.481	6.086	3.063	7.986	3.972	18.255	15.771	2.529	3.408	104.234
50ju	Rendimiento (Tn/Ha)	3,90	3,32	2,55	2,96	2,16	3,53	3,36	3,71	3,45	3,12
	Residuos de cosecha	107.489	461.665	252.852	627.062	348.376	1.360.374	1.192.197	185.957	255.592	8.051.244
	Fertilizantes	-	-	2.810	264.029	-	-	-	-	-	408.128
	Combustibles y Lubricantes	47.857	143.736	115.745	213.008	160.793	415.467	356.956	85.606	124.533	2.838.723
Emisiones Soja (Kgs CO _{2eq})	Produccion Fertilizantes	-	4.607	1.178	110.670	-	19.720	46.810	-	4.930	269.398
(NB3 CO2eq)	Produccion Combustibles y Lubricantes	4.625	13.900	11.192	20.596	15.536	40.166	34.525	8.282	12.037	274.486
	Estructura campo+Lotes sin produccion (1)	36.679	38.338	36.679	40.086	38.772	38.013	38.338	36.679	37.627	681.594
	Total x cultivo	196.650	662.247	420.456	1.275.451	563.477	1.873.741	1.668.826	316.524	434.719	12.523.573
	Residuos de cosecha	73	76	83	79	88	75	76	74	75	77
	Fertilizantes	-	-	1	33	-	-	-	-	-	4
Emisiones x Tn	Combustibles y Lubricantes	32	24	38	27	40	23	23	34	37	27
Soja	Produccion Fertilizantes	-	1	0	14	-	1	3	-	1	3
(Kgs CO _{2eq} /TN)	Produccion Combustibles y Lubricantes	3	2	4	3	4	2	2	3	4	3
	Estructura campo+Lotes sin produccion	25	6	12	5	10	2	2	15	11	7
	Total x Tonelada	133	109	137	160	142	103	106	125	128	120

⁽¹⁾Asignado por Tonelada producida

2 – Feedstock transport module

2.1 – Transport by Truck

PROFIT[®] system source

DATA SOURCE TRIPS Kilómeters per trip "Approved consolidated baseline and monitoring methodology ACM0017 "Production of biodiesel for use as fuel" - v.01.1 - UNFCCC - CDM Executive Board".

Emisiones por	km recorrido	Unidades	Ecuacion	Valor
	Consumo específico de Gas-Oil	Lt/ 100 Km	Tabla 1.39 - IPCC 1996 - Heavy Duty	29,90
	Consumo ajustado por IDA y Vuelta	Lt/ 100 Km	Según ACM0017 / Version 01.1	59,80
FECO2 LTS	s Factor de emision de CO2		Ver Hoja Factores de emision Incluye LCA	2,92
CO2	Emisiones CO2 por Transporte por Km	KgsCO2/Km	Ajustado por ida y vuelta	1,74
FEN2O LTS	Factor de emision de N2O	mg N2O/Km	IPCC 2006 - Cuadro 3.2.5 - Pre- Euro Diesel - Autobus - Rural	30,00
N2O	Emisiones N2O por Gas-Oil Transporte	KgN20/Km	Ajustado por ida y vuelta	0,00
FECH4 Lts	Factor de emision de CH4	mg CH4/ km	IPCC 2006 - Cuadro 3.2.5 - Pre- Euro Diesel - Autobus - Rural >	80,00
CH4	Emisiones CH4 por Gas-Oil Transporte	KgCH4/km	Ajustado por ida y vuelta	0,00
FE _{CO2eq} Unidad	Factor de emision x KM recorrido	KgsCO _{2eq} /Km	FE total x Km	1,76

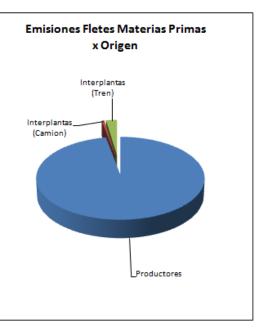
2.2 – Transport by Train

PROFIT[®] system source

DATA SOURCE Tons Wagons Wagons per train "Approved consolidated baseline and monitoring methodology ACM0017 "Production of biodiesel for use as fuel" - v.01.1 - UNFCCC - CDM Executive Board".

Emisiones por	km recorrido	Unidades	Ecuacion	Valor
	Consumo específico de Gas-Oil	Lt/Km	Locomotora General Motors GT 22 CW ⁽¹⁾	3,40
	Consumo ajustado por IDA y Vuelta	Lt/Km	Según ACM0017 / Version 01.1	6,80
FECO2 LTS	Factor de emision de CO2	KgsCO2/Lts	Ver Hoja Factores de emision Incluye LCA	2,92
CO2	Emisiones CO2 por Transporte por Km	KgsCO2/Km	Ajustado por ida y vuelta	19,82
FEN2O LTS	Factor de emision de N2O	mg N2O/Km	No hay dato	-
N2O	Emisiones N2O por Gas-Oil Transporte	KgN20/Km	Ajustado por ida y vuelta	-
FECH4 Lts	Factor de emision de CH4	mg CH4/ km	No hay dato	-
CH4	Emisiones CH4 por Gas-Oil Transporte	KgCH4/km	Ajustado por ida y vuelta	-
FE _{CO2eq Unidad}	Factor de emision x KM recorrido	KgsCO _{2eq} /Km	FE total x Km	19,82

⁽¹⁾ Fuente: www.forotransportes.com/showthread.php?t=4357

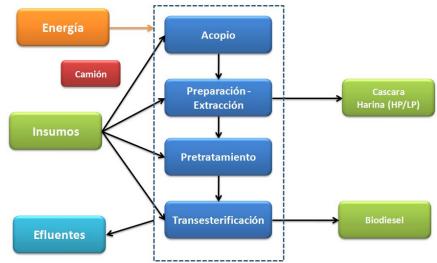

Transport summary MP

RESUMEN EMISIONES DE GASES DE EFECTO INVERNADERO FLETES MATERIAS PRIMAS - SOJA 2010-2011


Desde:		Recibido en:	Frias	Alimenta	Cereales del Sur	Otros	Total
	Toneladas	Tn	194.618	14.106	4.846	684	214.254
Productores	Distancia Prom.	Km/Viaje	270	30	190	30	252
Productores	Emisiones	KgsCO2Eq	3.153.121	23.548	57.713	1.249	3.235.631
	Emisiones x Tn	KgsCO2Eq/Tn	16,2	1,7	11,9	1,8	15,1
	Toneladas	Tn	-	-	-	2.492	2.492
Interplantas	Distancia Prom.	Km/Viaje	-	-	-	129	129
(Camion)	Emisiones	KgsCO2Eq	-	-	-	19.067	19.067
	Emisiones x Tn	KgsCO2Eq/Tn	-	-	-	7,7	7,7
	Toneladas	Tn	4.070	-	-	-	4.070
Interplantas	Distancia Prom.	Km/Viaje	555	-	-	-	555
(Tren)	Emisiones	KgsCO2Eq	78.717	-	-	-	78.717
	Emisiones x Tn	KgsCO2Eq/Tn	19,3	-	-	-	19,3
	Total emisiones	KgsCO2Eq	3.231.838	23.548	57.713	20.317	3.333.415

Resumen	Toneladas recibidas en Frias	Tn	198.688
Ingresado a	Total Emisiones por Fletes	KgsCO2Eq/Tn	3.333.415
Frias ⁽¹⁾	Promedio Emisiones x Tn	KgsCO2Eq/Tn	16,8

(1) Para utilizar en el calculo de emisiones del biodiesel se toman el total de las emisiones por flete pero tomando en cuenta las Tn recibidas en frias sin tener en cuenta la diferencia entre lo recibido de productores y lo ingresado efectivam


Industrial module (Frías Plant)

3. Transformation emission estimation (e_p)

Art. 11: The accounting of tranformation emitions e_p , shall include the emitions produced during the proper transformation of the feedstock, the residues and the emission produced by the manufacture of the different input materials

- CO₂ from the use of fossile fuels.
- Freigh of input fuels (CO₂ from the use of fossile fuels).
- Emissions related with the life cycle of input materials.
- CH₄ coming from the efluent treatment

3.1 - Energy

EMPLOYED DATA Consumption Type of fuel Sector distribution

Source of emissions associated with fuel consumption

Tipo de Com	bustible/Energético			Gas-Oil	Nafta	Lubricantes	G.L.P.	Gas Natural	Leña	Energía Electrica	Fuel-Oil
Variable	Descripcion	Unidades	Fuente	Lts	Lts	Lts	Kg	M ³	Kg	KwH	Kg
PCI	Poder Calorífico Inferior	Kcal/unidad	Pagina 197 - Tabla 3.1-16. Factores de Emisión de CO2	8.619	7.607	8.497	10.960	8.300	2.300		9.800
D	Densidad	Kgs/unidad	Pagina 197 - Tabla 3.1-16. Factores de Emisión de CO2	0,8450	0,7350	0,8850	0,5370	0,7190			0,9450
Frac Ox	Fraccion de Carbono Oxidado	%	Modulo Energía - Hoja 1-1 - Método de Referencia	0,990	0,990	0,990	0,990	0,995	0,870		0,990
Cc	Contenido de Carbono	тс/тл	Pagina 197 - Tabla 3.1-16. Factores de Emisión de CO2	20,28	18,90	20,00	17,20	15,31	29,90		21,25
FE _{CO2 KCAL}	Factor de emision de CO ₂	KgsCO ₂ /Kcal	$FE_{co2} = C_c^* Frac Ox * 44/12$	0,0003082	0,0002872	0,0003040	0,0002614	0,0002339	0,0003993		0,0003230
FE _{CO2 Unided}	Factor de emision de CO ₂	KgsCO ₂ /Unidad	FEx Unidad de consumo	2,66	2,19	2,58	2,87	1,94	0,92	0,351	3,17
FE _{N20}	Factor de emision de N ₂ O	KgsN ₂ O/TJ	Modulo Energía - Hoja 1-3	2,0	1,00	1,0	0,6	0,525	4,00		0,3
FE _{NZO KCAL}	Factor de emision de N ₂ O	KgsNzO/Kcal	Cambio de Unidades	0,000	0,000	0,000	0,000	0,000	0,000		0,000
FE _{N20 Unidad}	Factor de emision de N ₂ O	KgsCO ₂ /Unidad		0,000	0,000	0,000	0,000	0,000	0,000		0,000
FE _{CH4}	Factor de emision de CH ₄	KgsCH ₄ /TJ	Modulo Energía - Hoja 1-3	11,00	20,00	0,60	1,10	3,125	30,00		2,08
FE _{CH4 KCAL}	Factor de emision de CH ₄	KgsCH ₄ /Kcal	Cambio de Unidades	0,000	0,000	0,000	0,000	0,000	0,000		0,000
FE _{CH4 Unidad}	Factor de emision de CH ₄	KgsCO ₂ /Unidad		0,000	0,001	0,000	0,000	0,000	0,000		0,000
FE _{cozeq Unided}	Factor de emision de CO _{zeq}	KgsCO _{2cq} /Unidad	FE total x Unidad	2,69	2,21	2,59	2,87	1,95	0,94	0,351	3,17
FE _{COZeq Kosi}	Factor de emision de CO _{2eq}	KgsCO _{zoq} /Kcal	FE total x Kcal	0,0003118	0,0002903	0,0003053	0,0002623	0,0002348	0,0004072		0,0003236
Emisiones LO	CA										
	Emisiones Extracción	KgCO _{zeq} /Kg producto	Metodologia MDL: ACM0017 / Version 01.1	0,073	0,073						
	Emisiones Refinado	KgCO _{zeq} /Kg producto	Metodologia MDL: ACM0017 / Version 01.1	0,233	0,233						
	Emisiones totales por Kg	KgCO _{zeq} /Kg producto		0,306	0,306						
FE _{cozeq Unidad}	Factor de emision de CO _{2eq}	KgsCO _{2ce} /Unidad	FE total x Unidad	0,259	0,225	0,259	0,287	0,195			0,317
FE _{COZeq Kosl}	Factor de emision de CO _{2eq}	KgsCO _{zee} /Kcal	FE total x Kcal	0,0000300	0,0000296	0,0000305	0,0000262	0,0000235			0,0000324
FETotal cozeg Kor	Factor de emision de CO _{zeq}	FE _{COZeq Kcel} + LCA	FE total x Unidad	2,946	2,434	2,853	3,162	2,144	0,937	0,351	3,488

3.2 – Input material transport 3.3 – Input material production

EMPLOYED DATA Cuantity Truck weight Distance

Similar model to the one used for raw materials per truck

EMPLOYED DATA Quantity of methanol "Approved consolidated baseline and monitoring methodology ACM0017 "Production of biodiesel for use as fuel" - v.01.1 - UNFCCC - CDM Executive Board".

ID Number:	5
Parameter:	EF _{MeOH_PC}
Data unit:	tCO ₂ /t methanol
Description:	Specific emission per tonne of produced methanol
Source of data:	Apple 1998: < <u>http://edj.net/sinor/SFR4-99art7.html</u> > and 2006 IPCC Guidelines.
Measurement	1.95 tCO ₂ /tonne produced methanol
procedures (if any):	
Any comment:	Based on 30 GJ/tonne energy requirement and average of IPCC emissions factors
	for natural gas and diesel oil

3.4 – Liquid effluents

EMPLOYED DATS Oil production

Methodoly according to chapter 5 of the IPCC 2006 guide

PROCEDURE

- Step 1: Calculate the ammount of residual water related to the oil production.
- Step 2: Calculate the degradable material (Equation 6.6)
- Step 3: Calculate the total emissions from the final liquid (Equation 6.4).

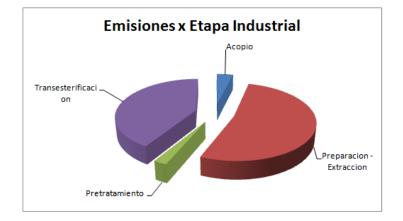
Apropiation of the emitions Co-Productos

Mass balance: Emitions are appropriate according to real yields and mass balance (% weight) in each step.

Energy content: According to the European Union Directive Where a fuel production process produces, in combination, the fuel for which emissions are being calculated and one or more other products (coproducts), greenhouse gas emissions shall be divided between the fuel or its intermediate product and the co-products in proportion to their energy content (determined by lower heating value in the case of co-products other than electricity). ". Annex V – Point 17.

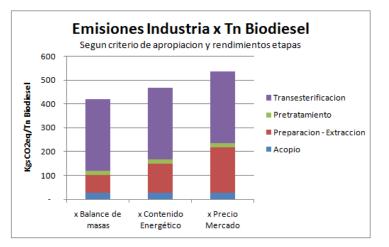
Market price: According to EB 50 – the executive board of the Clean Development Mechanism, for assigning of co-products. This methodology is being used for projects that generate cetrtiified emition green bonus.

Industry Emissions Summary


RESUMEN EMISIONES DE GASES DE EFECTO INVERNADERO

Planta FRIAS - Santiago del Estero

2.011


Emisiones por Etapa (kgsCO2eq)	Energia	Transporte Insumos	Produccion Insumos	Efluentes	Total
Acopio	813.370	2	10	-	813.382
Preparacion - Extraccion	10.652.179	18.362	9.374	368.322	11.048.237
Pretratamiento	452.970	27.124	259	-	480.354
Transesterificacion	1.604.535	427.394	6.659.167	-	8.691.096
١	Total 13.523.053	472.884	6.668.810	368.322	21.033.069

			Emisiones po	r tonelada (Kg	sCO2eq/Tn)
Etapa	Produccion	Rendimiento	x Balance de masas	x Contenido Energético	x Precio Mercado
Acopio					
Ingreso Total	170.139				
Soja (Seca+Humeda)	167.460	98%	5	5	5
Preparacion - Extraccion					
Ingreso Soja	157.169				
Harina (HP/LP)	113.318	72%	73	62	46
Cascara	8.029	5%	73	55	26
Aceite crudo	30.346	19%	73	118	185
Pretratamiento					
Aceite (crudo/desgomado)	30.387				
Aceite tratado	28.966	95%	17	17	17
Transesterificacion					
Ingreso Aceite	28.728				
Biodiesel	28.873	101%	301	301	301
Resumen Emisiones Industri	a por Tonelada	a de Biodiesel			
Acopio			26	26	26
Preparacion - Extraccion			76	123	193
Pretratamiento			17	17	17
Transesterificacion			301	301	301
	Total (KgsCO2eq/Tn)	420	467	536

AG-ENERGY

VILUCO

4. Oversea transport San Lorenzo -Rotterdam

Transporte terrrestre Frias-Puerto (Camión)

Distancia a Puerto	Km	750 Distancia a Puerto San Lorenzo
Aforo x Viaje	Tn/viaje	28,71 Promedio Octubre-Diciembre 2010
Emisiones a Puerto	KgsCO2eq /Tn	46,10

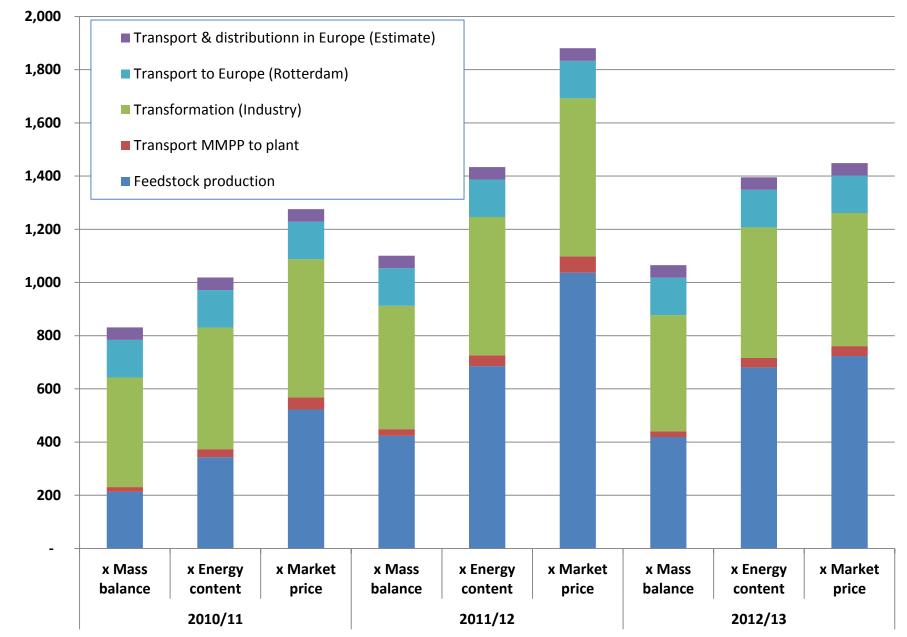
Transporte martítimo San Lorenzo-Rotterdam (Buque)

Distancia a Puerto	Km	11.357 Distancia lineal corregida por un factor del 42%
Factor de emision x TN Km	KgsCO _{zee} /Tn Km	0,00418 Buque HANDY MAX (40.000 Tn Año 1980) - Bilan Carbone - V 5.0.
Emisiones a Puerto Destino	KgsCO2eq /Tn	94,94 Se considera el viaje ida y vuelta
Total Transporte a Europa	KgsCO2eq /Tn	141,04

Summary per Ton

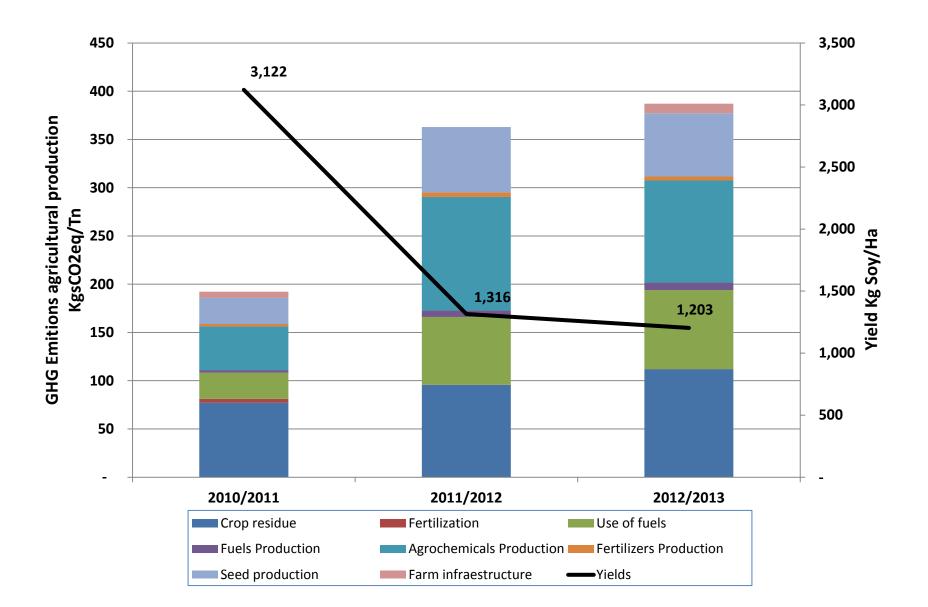
Resumen Emisiones Produccion de Biodiesel

de acuerdo a Directiva Europea de Biocombustibles - EU 2009/28/CE 2010-2011

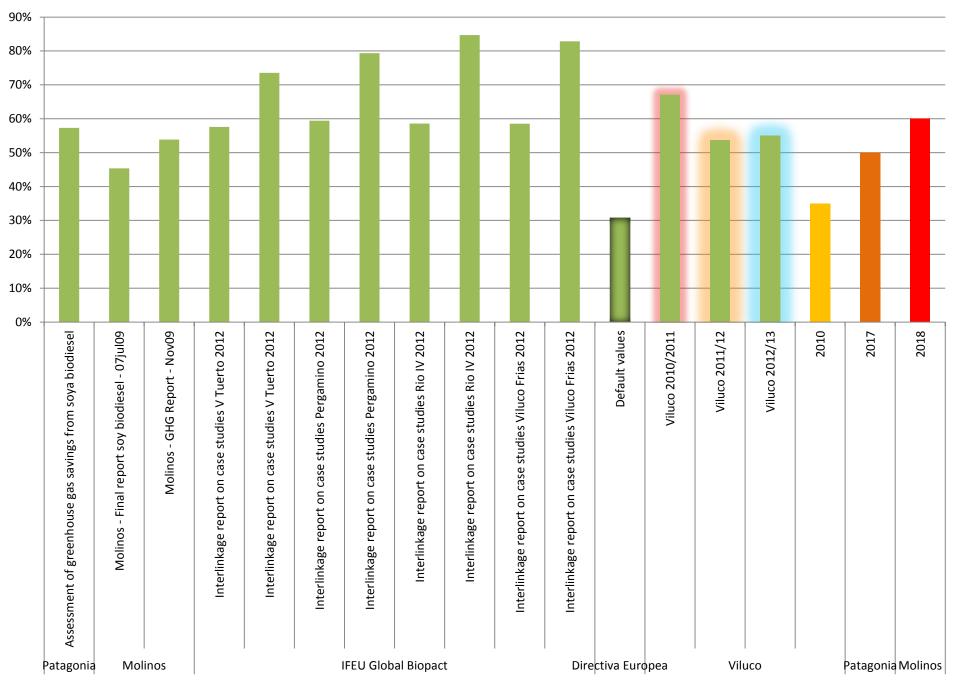

Emisi	ones por tonelada (KgsCO2eq/Tn Biodiesel)	x Balance de masas	x Contenido Energético	x Precio Mercado			
e _{ec}	Extracción o del cultivo de las materias primas	150	243	381	Promedio de los campos propios. Incluye Flete a Planta y Rendimiento Industria de acuerdo a Directiva Europea de Biocombustibles - EU 2009/28/CE. Incluye produccion de insumos.		
ep	Transformación (Industria)	420	467	536	Incluye produccion y transporte de insumos.		
e _{td}	Transporte y distribución (Estimado)	141	141	141	Estimado Flete c	amión hasta San Lorenzo y Barco a Rotterdam.	
E _B	Emisiones procedentes de la produccion y uso de biodiesel (Kgs CO2eq/TN)	711	851	1.059			
					Directiva Europea de Biocombustibles - EU 2009/28/CE		
Emisiones por tonelada (gCO2eq/Mj)		x Balance de masas	x Contenido Energético	x Precio Mercado	Valores Tipicos	Valores por Default	
e _{ec}	Etapa Agrícola	4	7	10	19	19 Valores directiva: Anexo V - Articulo D	
ep	Industria	11	13	14	18	26 Valores directiva: Anexo V - Articulo D	
e _{td}	Transporte y distribución (Estimado)	4	4	4	13	13 Valores directiva: Anexo V - Articulo D	
E _B	Emisiones procedentes de la produccion y uso de biodiesel (g CO2eq/Mj)	19	23	29	50	58	
E _F	Emisiones	83,8	83,8	83,8	83,8	83,8 Directiva Europea - Anexo V - Art. 19	
RED	Reduccion = $(E_F - E_B)/E_F$	77%	73%	66%	40%	31%	

Results from all the production and transformig complex 2010/2014

VILUCO S.A.



Interanual variation



Biodiesel Rotterdam KgsCO2eq/Tn Biodiesel

Yield effect over relative contribution

GHG REDUCTIONS

Ministerio de Agricultura, Ganadería y Pesca Presidencia de la Nación

Ings Jorge Hilbert v Sebastián Galbusera

Instituto Nacional de Tecnología AgropecuariaINTA Tel +54 11 4665-0495 0450

http://www.inta.gov.ar/info/bioenergia

RCN Conference on Pan American Biofuels & Bioenergy Sustainability Golden Tulip Recife Palace, Recife, Brazil July 22-25, 2014

