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Presenter
Presentation Notes
Thank you....

This webinar will introduce you to how you can simulate laminar and turbulent reacting flows

Firstly, we’ll ask why it is useful for your workflow to simulate these processes

Then we’ll go through some of the tools that can be used to model non-ideal reactors and mixers

After that, we’ll discuss good modeling strategies

And then then finally present a few applications, where modeling is used, along with examples from such applications.


Why Simulate?

e UUnderstandin g S———

— Enable intuition for further
innovation

Flow and chemical composition in a plate reactor
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Let’s start by asking ourselves a question. Why simulate non-ideal reactors and mixers.

We ask this question because simulating reactors and mixers has not, at least in our experience, been a traditional part of a chemical engineer’s education.

Engineers have often relied experimental and empirical results to govern and design a reactor’s size and operating conditions. If simulation has existed, it has been to simulate a whole process through process control.

But as simulating tools and computational power has increased over the years, we believe that simulation is attainable for all chemical engineers.

Firstly, simulating a process, reactor or mixer gives you insight by providing an understanding of the different parameters that make up your system, and how they affect each other.

With this understanding comes an intuition that leads to innovation.


Why Simulate?

e Understanding

— Enable intuition for further
innovation

e Testing of new ideas

Optimization of a catalytic reactor
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Modeling and simulation also lets you propose some designs and process conditions, and then tinker with them or optimize them.

A lot can be considered and achieved before proceeding to the expensive stage of building prototypes or deploying directly to manufacture, through using simulations.


Why Simulate?

e Understanding

— Enable intuition for further innovation

e Testing new ideas

e Control and

optimization

— Adapt the process to different
operating conditions

— Reduce the need for prototypes and
pilot plants

Batch reactor equipped with
three Rushton turbines
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Modeling and simulation also lets you propose some designs and process conditions, and then tinker with them or optimize them.

A lot can be considered and achieved before proceeding to the expensive stage of building prototypes or deploying directly to manufacture, through using simulations.


Why Simulate?

Understanding

— Enable intuition for further innovation

Testing new ideas

Control and optimization

— Adapt the process to different operating
conditions

— Reduce the need for prototypes and pilot
plants

Predict the unmeasurable

— Simulate impossible or dangerous scenarios

Flow and reactions in an idealized
porous catalytic particle
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Sometimes you need to know what would happen if the unthinkable did happen, such as in an industrial accident.

A real-life experimental of such a scenario may be dangerous or impossible to perform, but you still need to understand and prepare for it if actually did happen.

Simulation can provide a decent estimate of what could happen, and allow you to build safeguards if it did happen.


Why Simulate?

e Understanding

— Enable intuition for further innovation

e Testing new ideas
e Control and optimization

— Adapt the process to different operating conditions
— Reduce the need for prototypes and pilot plants

e Predict the unmeasurable

— Simulate impossible or dangerous scenarios

e \/alidation

Reacting flow in a tank equipped
with a bottom mixer
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Finally, the real world may still be different than the simulations and prototypes would indicate.

Working together with the quality assurance and manufacturing processes, simulations allow you to test and verify the quality of the design, process or product, to ensure that certain qualitative and safety standards are met.
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The product chart in the preceding slide includes functionality that describes modeling of mass, momentum, and energy transfer involving chemical reactions, the phenomena also represented in this chart. 
You may recognize the categorization here, which is familiar to all chemical engineers that studied the book ”Transport Phenomena” by Bird, Stewart, and Lightfoot.
The phenomena mapped here form the backbone in modeling of non-ideal reactors.


The Chemical Reaction Engineering Interfaces
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The structure described by mass, momentum, and energy transport phenomena together with chemical reactions is also reflected in the list of transport and reaction interfaces in COMSOL’s Chemical Reaction Engineering and CFD Modules.�
This list is a snapshot from the model wizard in COMSOL, in the step where you select the phenomena that you may want to include in your model.
Here you can select from transport interfaces to model multicomponent transport and reactions, single phase and two-phase flow, laminar and turbulent flow, and heat transfer through conduction, convection, and radiation.
A specific Chemical Species Transport interface, the Reaction Engineering interface, is able to generate mass and energy conservation and transport equations from chemical equations that you type in almost like using pen and paper.
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A typical modeling strategy, or maybe an ideal modeling strategy, is to start the analysis of non-ideal reactors using ideal reactor models. 
A space-independent model, with respect to concentration and temperature, is a good way of verifying and validating the reaction mechanism used in the model.
Once a mechanism is validated and verified, models for non-ideal reactors may be investigated.
For example, you may calibrate and compare your model results to experimental data from lab-scale experiments with controlled composition and temperature. 
Running parameter estimation procedures may give you a good match between experiments and model, providing that you have covered a representative range of operation, and that the assumed mechanism gives a good description of the reaction kinetics.
It may also be required to run parameter estimation for transport properties in high-fidelity models, for example turbulence properties.
In addition, if a simplified space-dependent model is used for non-ideal reactors, further calibration may be needed for these simplified model parameters.
In some cases, one may discover that the range of operation in a space-dependent reactor model is not covered by the trials for the perfectly mixed system. 
In such cases, going back to check the perfectly mixed system model may be required. 


Modeling Strategy, Heterogeneous Catalysis
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A typical modeling strategy, or maybe an ideal modeling strategy, is to start the analysis of non-ideal reactors using ideal reactor models. 
A space-independent model, with respect to concentration and temperature, is a good way of verifying and validating the reaction mechanism used in the model.
Once a mechanism is validated and verified, models for non-ideal reactors may be investigated.
For example, you may calibrate and compare your model results to experimental data from lab-scale experiments with controlled composition and temperature. 
Running parameter estimation procedures may give you a good match between experiments and model, providing that you have covered a representative range of operation, and that the assumed mechanism gives a good description of the reaction kinetics.
It may also be required to run parameter estimation for transport properties in high-fidelity models, for example turbulence properties.
In addition, if a simplified space-dependent model is used for non-ideal reactors, further calibration may be needed for these simplified model parameters.
In some cases, one may discover that the range of operation in a space-dependent reactor model is not covered by the trials for the perfectly mixed system. 
In such cases, going back to check the perfectly mixed system model may be required. 


Example of the Modeling Strategy with the
Chemical Reaction Engineering Module
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Let us look at an example of the modeling procedure for non-ideal reactors. 
We will start with a space-independent model, which we can expand to describe a non-ideal reactor using a two-dimensional model.

http://www.comsol.com/trademarks

Reaction Model

e Reaction:

a+b&®c+d
d+e&>f+g

e Reactor model:

— Parallel plate reactor with fully developed laminar
ﬂOW Inlet —m> % —> QOutlet
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The reaction model includes one reaction that produces chemical species c and d and one by-reaction that consumes species d, according to the chemical equations above. 
Both reactions are assumed reversible but they are not at equilibrium.
I will now go to the Chemical Reaction Engineering Module and set up this model live.
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Let us now recapitulate the modeling procedure. As we all could see in the demo, setting up a space-independent model is very straight-forward. Just type in the chemical equations and the species list and the material balances for each species are automatically formulated. The energy and momentum balances can also be formulated automatically.  Models for batch, semi-batch, continuous stirred tank reactors, and plug-flow reactors are predefined.
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The formulations can also account for changes in density and volume, to simulate for example combustion engines. 
In this example, experimental data points have also been included and a parameter estimation has optimized the model to match the experiments.
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As shown in the demo, you can use the material balances defined in the space-independent model to automatically define a space-dependent model in the module (1D, 2D, 2D-axi, 3D). 
The transport properties can also be calculated from data for the individual chemical species. 
We did not use that feature though.
The automatic definition also covers momentum balances, where density and viscosity can be estimated from the chemical composition of the solution.


Example of the Modeling Strategy for
Heterogeneous Catalysis
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Let us look at an example of the modeling procedure for non-ideal reactors. 
We will start with a space-independent model, which we can expand to describe a non-ideal reactor using a two-dimensional model.
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Use of External Physicochemical Data

CHEMKIN import

— Standardized text file format for import of
e Transport properties (viscosity etc)
* Physical properties (heat capacity, enthalpy, entropy, etc)
e Reaction kinetics mechanisms (expressions)

— Set up the reactions automatically in the Reaction Engineering interface
— NASA Polynomials possible to enter through CHEMKIN™ file

Thermodynamics interface

— Port to industrial performance non-ideal mixture property models and data such as
e Aspen Properties®, aspenONE®, COMThermo® packages, Simulis® Thermodynamics, etc.

— Temperature- and pressure-dependent properties
— Concentration-dependent mixing rules (non-ideal mixtures)
— Multiphase-equilibrium phase diagrams, flash calculations

W COMSOL


Presenter
Presentation Notes
High-fidelity models also require high-fidelity kinetics and thermodynamic input data. You may import this data from CHEMKIN, NASA, NIST, and JANAF files. You may also link to other commercial packages for thermodynamic and kinetic data.


Applications and Examples

W COMSOL


Presenter
Presentation Notes
Let us now look at a few examples from different fields solved using the Chemical Reaction Engineering Module and, in some cases, the CFD Module.
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Who can benefit from chemical
reaction engineering modeling?

e Not only traditional “Chemical Industry”:
— Bulk and Fine Chemicals Production
— Pulp and Paper
— Energy and Environmental
— Food and Household Products
— Pharmaceuticals and Biotechnology
— Materials, Polymers, and Petrochemicals
— Surface Chemistry and Semiconductors
— Water and Effluent Treatment
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This is a list of typical applications for the type of simulations described in this presentation. The list of applications is not limited to what traditionally is called the chemical industry.


Energy and Environmental
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A classic case for simulating transport and reaction processes in the field of catalysis and reaction engineering is the monolithic reactor, for example used in catalytic converters.


Energy and Environmental
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Flow field, concentration, and temperature distribution in a diesel particle filter
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Simulation is often required to optimize the reactor or catalyst to ensure minimal material loss at lowest possible pressure loss. This figure shows the simulation results of the gas composition in a diesel particle filter.


Water and Effluent Treatment
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In addition to using resources efficiently, chemical engineers are also concerned with the regeneration and recycling of effluent streams from chemical processes.


Water and Effluent Treatment

* This model also
requires Velocity field and volume fraction of the dispersed
the CED Module phase in a secondary sedimentation clarifier*
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In water treatment facilities, an important part of the purification process involves separating solids from water. The solid particles are sedimented and separated in pools, or clarifiers. This is a benchmark case for these types of systems.


Pharmaceuticals and Biotechnology
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Drying is a central unit operation present in chemical engineering. For pharma and bio applications, freeze drying is a common process to dry heat sensitive products.


Pharmaceuticals and Biotechnology

Temperature distribution and heat flux in a freeze drying process |
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Water is removed through the sublimation of ice, leaving a porous material when the process is finished.


Bulk and Fine Chemicals Production

FLAMMABLE 648
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The production of bulk chemicals relates to all facets of chemical engineering. Small improvements in design or process operating parameters often lead to large savings in costs. 


Bulk and Fine Chemicals Production

Velocity field, concentration, and temperature distributions in a steam reformer ’
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Optimal placement of heating pipes in this steam reformer, for example, is imperative for ensuring that the endothermic reactions will occur at the desired rate.


Food and Household Products
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Emulsions find wide application in the production of food, cosmetics, and household products.


Food and Household Products

Velocity field and position of the two-phase interface in an emulsifier*

* This model also requires
the Microfluidics Module or the CFD Module
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The properties and quality of an emulsion typically depend on the size and the distribution of the droplets.



Petrochemistry and Polymerization
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Petrochemistry transforms crude oil and natural gas into useful products such as fuels and raw materials.


Petrochemistry and Polymerization

Velocity field and streamlines along with the concentration distribution in a multijet tubular reactor* |

* This model also requires
the CFD Module ‘.
NH CONMSOL
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The polymer industry makes use of petrochemicals to produce plastics.


Surface Chemistry and Semiconductors
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Velocity field streamlines and concentration distribution
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Active sites in a biosensor
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Modern material design technology is often concerned with engineering surfaces and layers.


Surface Chemistry and Semiconductors

Bulk reactions
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The chemistry of such must sometimes be seperated between that which happens at a surface as opposed to the bulk.


Combustion Chemistry

Line Graph: Velocity field, z component (m/s)
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COMSOL model of syngas combustion in a Good agreement with experimental
turbulent round-jet burner results
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Also combustion models are typically described with a large number of reactions and chemical species balances. This concludes my part of the talk and I will now give the word back to Phil.


Q&A Session
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Try COMSOL Multiphysics®
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Connect

Meet with colleagues and multiphysics
simulation experts.

Learn

Expand your knowledge and discover
new features through lectures and
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Innovate
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