Chemical Reaction Engineering Modeling and Simulation in COMSOL Multiphysics®

Jennifer Segui Sr. Technical Marketing Engineer COMSOL

Ed Fontes
Chief Technology Officer
COMSOL

Contents

- Why numerical simulation?
 - Introduction to COMSOL Multiphysics® software
- Tools for modeling:
 - Transport and reactions
 - Heterogeneous catalysis
- Modeling strategy
- From model to app
- Applications and examples
- Q&A session
- How to:
 - Try COMSOL Multiphysics®
 - Contact us

Understanding

Enable intuition for further innovation

Flow and chemical composition in a plate reactor

- Understanding
 - Enable intuition for further innovation
- Testing of new ideas

Optimization of a catalytic reactor

- Understanding
 - Enable intuition for further innovation
- Testing new ideas
- Control and optimization
 - Adapt the process to different operating conditions
 - Reduce the need for prototypes and pilot plants

- Understanding
 - Enable intuition for further innovation
- Testing new ideas
- Control and optimization
 - Adapt the process to different operating conditions
 - Reduce the need for prototypes and pilot plants
- Predict the unmeasurable
 - Simulate impossible or dangerous scenarios

Flow and reactions in an idealized porous catalytic particle

- Understanding
 - Enable intuition for further innovation
- Testing new ideas
- Control and optimization
 - Adapt the process to different operating conditions
 - Reduce the need for prototypes and pilot plants
- Predict the unmeasurable
 - Simulate impossible or dangerous scenarios
- Validation

Reacting flow in a tank equipped with a bottom mixer

Product Suite - COMSOL® 5.2a

TI COMSOL

COMSOL Multiphysics®

COMSOL Server™

FLUID ELECTRICAL MULTIPURPOSE MECHANICAL EMICA AC/DC Heat Transfer CFD Chemical Reaction Optimization LiveLink™ LiveLink™ Module Module Module Engineering Module for Excel® Mixer Batteries & CAD Import Mechanics Module Module Fuel Cells Module Microfluidics Electrodeposition Particle Tracing LiveLink™ Module Module for SOLIDWORKS" Subsurface Flow Ray Optics Corrosion LiveLink™ LiveLink™ Module Module Pipe Flow Electrochemistry LiveLink™ LiveLink™ for PTC Module Module Molecular Flow LiveLink™ for PTC* LiveLink™ Dynamics Module Module Pro/ENGINEER* Semiconductor Acoustics for CATIA" V5

Mass, Energy, and Momentum

The Chemical Reaction Engineering Interfaces

Chemical Reaction Engineering Module and CFD Module

Modeling Strategy

Space-independent

Perfectly mixed systems

Space-dependent process

Modeling Strategy, Heterogeneous Catalysis

TI COMSOL

Example of the Modeling Strategy with the Chemical Reaction Engineering Module

IIII

Reaction Model

• Reaction:

$$a + b \Leftrightarrow c + d$$

 $d + e \Leftrightarrow f + g$

- Reactor model:
 - Parallel plate reactor with fully developed laminar
 flow Inlet Outlet

Define Chemical Reaction Formulas in Perfectly Mixed Environment

Simulation and Parameter Estimation Ideal Batch Reactor

Extend to Space-Dependent Models of Non-Ideal Reactors

Example of the Modeling Strategy for Heterogeneous Catalysis

Model Definition

Modeling Results

From Model to App

Use of External Physicochemical Data

CHEMKIN import

- Standardized text file format for import of
 - Transport properties (viscosity etc)
 - Physical properties (heat capacity, enthalpy, entropy, etc)
 - Reaction kinetics mechanisms (expressions)
- Set up the reactions automatically in the Reaction Engineering interface
- NASA Polynomials possible to enter through CHEMKIN™ file

Thermodynamics interface

- Port to industrial performance non-ideal mixture property models and data such as
 - Aspen Properties®, aspenONE®, COMThermo® packages, Simulis® Thermodynamics, etc.
- Temperature- and pressure-dependent properties
- Concentration-dependent mixing rules (non-ideal mixtures)
- Multiphase-equilibrium phase diagrams, flash calculations

Applications and Examples

Who can benefit from chemical reaction engineering modeling?

- Not only traditional "Chemical Industry":
 - Bulk and Fine Chemicals Production
 - Pulp and Paper
 - Energy and Environmental
 - Food and Household Products
 - Pharmaceuticals and Biotechnology
 - Materials, Polymers, and Petrochemicals
 - Surface Chemistry and Semiconductors
 - Water and Effluent Treatment
 - **–** ...

Energy and Environmental

Energy and Environmental

Flow field, concentration, and temperature distribution in a diesel particle filter

Water and Effluent Treatment

Water and Effluent Treatment

* This model also requires the CFD Module

Velocity field and volume fraction of the dispersed phase in a secondary sedimentation clarifier*

Pharmaceuticals and Biotechnology

Pharmaceuticals and Biotechnology

Temperature distribution and heat flux in a freeze drying process

Bulk and Fine Chemicals Production

Bulk and Fine Chemicals Production

Velocity field, concentration, and temperature distributions in a steam reformer

Food and Household Products

Food and Household Products

Velocity field and position of the two-phase interface in an emulsifier*

^{*} This model also requires the Microfluidics Module or the CFD Module

Petrochemistry and Polymerization

Petrochemistry and Polymerization

Velocity field and streamlines along with the concentration distribution in a multijet tubular reactor*

^{*} This model also requires the CFD Module

Surface Chemistry and Semiconductors

Surface Chemistry and Semiconductors

Bulk reactions

Surface reactions

$$Ga(C_{2}H_{5})_{3} + S_{A} \xrightarrow{k_{10}} GaC_{2}H_{5}^{*} + 2C_{2}H_{5}^{*}$$

$$Ga(C_{2}H_{5})H + S_{A} \xrightarrow{k_{11}^{*}} Ga(C_{2}H_{5})H^{*}$$

$$GaH_{2} + S_{A} \xrightarrow{k_{12}} Ga^{*} + 2H^{*}$$

$$Ga(C_{2}H_{5})H^{*} \xrightarrow{k_{13}} Ga^{*} + C_{2}H_{5}^{*} + H^{*}$$

$$AsH_{3} + S_{G} \xrightarrow{k_{14}} As^{*} + 3H^{*}$$

$$C_{2}H_{5}^{*} + S_{A} \xrightarrow{k_{15}^{*}} C_{2}H_{5A}^{*}$$

$$C_{2}H_{5}^{*} + S_{G} \xrightarrow{k_{16}^{*}} C_{2}H_{5G}^{*}$$

$$C_{2}H_{5A}^{*} \xrightarrow{k_{17}} H_{A}^{*} + C_{2}H_{4}$$

$$C_{2}H_{5G}^{*} \xrightarrow{k_{18}} H_{G}^{*} + C_{2}H_{4}$$

$$H_{A}^{*} \xrightarrow{k_{19}} S_{A} + H^{*}$$

$$H_{G}^{*} \xrightarrow{k_{20}} S_{G} + H^{*}$$

$$GaC_{2}H_{5}^{*} + As^{*} \xrightarrow{k_{21}} GaAs + C_{2}H_{5}^{*} + S_{A} + S_{G}$$

$$Ga^{*} + As^{*} \xrightarrow{k_{22}} GaAs + S_{A} + S_{G}$$

Combustion Chemistry

COMSOL model of syngas combustion in a turbulent round-jet burner

Good agreement with experimental results

Q&A Session

Product Suite - COMSOL® 5.2a

TI COMSOL

COMSOL Multiphysics®

COMSOL Server™

FLUID ELECTRICAL MULTIPURPOSE NTERFACING MECHANICAL EMICA LiveLink™ AC/DC Heat Transfer CFD Chemical Reaction Optimization LiveLink™ Module Module Module Module Engineering Module for MATLAB* for Excel® CAD Import RF Structural Mixer Batteries & Material Design Module Mechanics Module Module Fuel Cells Module Module Module Library LiveLink™ Wave Optics Nonlinear Structural Microfluidics Electrodeposition Particle Tracing ECAD Import Module Materials Module Module Module Module Module for SOLIDWORKS* Subsurface Flow Ray Optics Geomechanics Corrosion LiveLink™ LiveLink™ Module Module Module Module for Inventor* for AutoCAD® LiveLink™ MEMS **Fatigue** Pipe Flow Electrochemistry LiveLink™ for PTC* Module Module Module Module for Revit® Creo® Parametric™ LiveLink™ Plasma Multibody Molecular Flow LiveLink™ for PTC* Dynamics Module Module Module Pro/ENGINEER* for Solid Edge* Semiconductor Acoustics File Import Module Module for CATIA* V5

Try COMSOL Multiphysics®

North America

- Cleveland, OH
- Mississauga, ON
- King of Prussia, PA
- Dartmouth, NS
- Pasadena, CA
- Hillsboro, OR
- Palo Alto, CA
- Washington, DC
- Fremont, CA

Europe

- Dresden, Germany
- Warsaw, Poland
- Guildford, United Kingdom
- Bournemouth, United Kingdom
- Wien, Austria
- Villach, Austria

REGISTER TODAY

www.comsol.com/events

COMSOL CONFERENCE 2016

Connect

Meet with colleagues and multiphysics simulation experts.

Learn

Expand your knowledge and discover new features through lectures and hands-on minicourses.

Innovate

Discover how the application of simulation-driven design can spark innovation in your industry.

REGISTER TODAY

www.comsol.com/conference

Contact Us

- Questions?www.comsol.com/contact
- www.comsol.com
 - User Stories
 - Videos
 - Application Gallery
 - Discussion Forum
 - Blog
 - Product News

