American Institute of Chemical Engineers

STUDENT CONTEST PROBLEM

1982

345 East 47 Street

New York, New York 10017

CONTEST PROBLEM

1982

AMERICAN INSTITUTE OF CHEMICAL ENGINEERS STUDENT CHAPTERS

Open Only to Undergraduates or Those Without a Degree in Chemical Engineering

DEADLINE FOR MAILING

Solution must be postmarked not later than midnight, June 1, 1982

RULES OF THE CONTEST

Solutions will be graded on (a) substantial correctness of results and soundness of conclusions, (b) ingenuity and logic employed, (c) accuracy of computations, and (d) form of presentation. Accuracy of computations is intended to mean primarily freedom from mistakes; extreme precision is not necessary.

It is to be assumed that the statement of the problem contains all the pertinent data except for those readily available in handbooks and similar reference works. The use of textbooks, handbooks, journal articles, and lecture notes is permitted. In cases where there is disagreement in the data reported in the literature, the values given in the statement of the problem have been chosen as being most nearly applicable.

The problem is not to be discussed with any person whatever until June 1, 1982. This is particularly important in cases where neighboring institutions may not begin the problem until after its completion by another chapter. Submission of a solution for the competition implies adherence to the foregoing condition.

A period of not more than thirty consecutive days is allowed for completion of the solution. This period may be selected at the discretion of the individual counselor, but in order to be eligible for an award a solution must be postmarked not later than midnight, June 1, 1982.

The finished report should be submitted to the chapter counselor within the thirty-day period. There should not be any variation in form or content between the solution submitted to the chapter counselor and that sent to the AIChE office. The report should be neat and legible, but no part need be typewritten.

The solution should be accompanied by a letter of transmittal giving only the contestant's name, school address, home address, and student chapter, lightly attached to the report. This letter will be retained for identification by the Secretary of the Institute. The solution itself must bear no reference to the student's name or institution by which it might be identified. In this connection, graph paper bearing the name of the institution should be avoided.

Each counselor should select the best solution or solutions, not to exceed two, from his chapter and send these by registered mail to

J. C. Forman, Secretary American Institute of Chemical Engineers 345 East 47 Street New York, New York 10017

Copyright 1981

American Institute of Chemical Engineers 345 East 47 Street, New York, New York 10017

AICHE STUDENT CONTEST PROBLEM

1982

Methanation Unit Design

INTRODUCTION

The present energy shortage has generated a great deal of interest in producing substitute natural gas (SNG) from coal. This gas can be distributed through the natural gas pipeline network and burned in existing equipment without modification.

The major processing sequence of converting coal to this so-called "substitute natural gas" (SNG) is shown in Figure 1. It starts with coal gasification (partial oxidation), where coal reacts with oxygen and steam to form a raw gas rich in CO and H2 and having a higher heating value of 200 to 400 Btu/scf. Before it can be upgraded into pipelinequality gas in the methanation unit, the raw gas is cooled, sent to the shift converter to produce sufficient H2 for the methanation reaction, and then sent to the gas purification unit where sulfur compounds plus some CO2 are removed. In the methanation unit, H2 and CO are converted to methane. Any excess CO2 may have to be removed so that the remaining gas will have a higher heating value comparable to that of natural gas (about 1,000 Btu/scf). Finally, the gas is compressed, dehydrated, and then delivered to the pipeline.

Your assignment is to develop a process design for the methanation unit in this SNG plant.

THEORY

Methanation of coal-derived synthesis gases involves catalytic conversion of carbon oxides and hydrogen according to the following exothermic reactions:

 $CO + 3H_2 = CH_4 + H_2O$ (CO methanation)

 $CO_2 + 4H_2 = CH_4 + 2H_2O (CO_2 methanation)$

The CO₂ methanation most probably proceeds through an endothermic intermediate state as shown below:

$$CO_2 + H_2 = CO + H_2O$$
 (reverse shift)

The methanation process is usually carried out in two steps: a bulk methanation step and a cleanup methanation step. Most of the carbon oxides are methanated in the bulk methanation step. The product gas from the bulk reactors generally does not meet the heating value and CO content specifications of substitute natural gas. This is because the extent of methanation is limited by the large amount of water by-product. To achieve additional methanation, the gas from the bulk methanator is cooled to condense out the water, then reheated for reaction in the cleanup methanator. The cleanup methanation step uses a lower temperature than the bulk methanation step because this increases the equilibrium constant.

For the purpose of this study, the bulk and cleanup methanators are adiabatic, fixed bed reactors containing alumina- or silica-supported nickel oxide catalysts. Other systems, such as direct-cooled tubular or fluid bed reactors, have been proposed, but have not been commercially proven. There is an upper temperature limit as well as a lower temperature limit at which the methanation catalyst can operate. Below the lower temperature limit, the reactions will not initiate. Above the upper temperature limit, the catalyst sinters and loses its activity. Owing to the high heat of reaction, there is a potential for a large temperature rise in the methanator. The temperature rise can be controlled either by recycling cooled product gas or by injecting steam into the methanator. Both the recycled gas and the steam act as heat carriers for the heat released

during methanation. Multiple reactors in series are often suggested for the bulk methanation step. This allows interreactor cooling, which reduces the quantity of recycled gas or steam injection.

Two empirical factors are specified for commercial reactor designs: the "space velocity" and "approach temperature difference." Space velocity is defined as the gas rate in standard cubic feet per hour divided by catalyst volume. Approach temperature difference, or approach ΔT , indicates the degree of departure from chemical equilibrium. The approach ΔT is the difference between the actual reactor outlet temperature and the equilibrium temperature corresponding to the composition of the reactor effluent. The approach ΔT varies with catalyst activity for a given space velocity. At start-of-run, the fresh catalyst is very active and the reaction proceeds to a close approach to equilibrium conversion, or small approach AT. The catalyst activity declines with continued use. This results in less conversion or a larger approach AT at end-of-run. The approach ΔT usually recommended for CO methanation is 10°F at start-of-run and 50°F at end-of-run.

The reverse shift reaction is considerably faster than CO methanation. Therefore, it has a closer approach to equilibrium in the methanators. The approach ΔT for this reaction is usually assumed to be zero at start and end-of-run.

PROCESS DESCRIPTION

A flow diagram for a methanation plant is shown in Figure 2. Note that this flow diagram does not include all equipment and/or heat exchange services, and the flow sequence shown is not necessarily optimum. It is provided for guidance only.

Purified synthesis gas enters a guard reactor for removal of the last traces of sulfur compounds by reaction with ZnO to protect the methanation catalyst from poisoning. ZnO in the guard reactor is periodically replaced. The minimum temperature required to operate the guard reactor is 450°F.

The sulfur-free feed gas from the zinc oxide reactor then enters the bulk methanator system. Effluent gas from each reactor in the bulk methanation system is cooled before entering the next reactor. Part of the effluent gas from the last bulk methanator is compressed and recycled to join the fresh feed, while the rest of the gas is further cooled to condense out the water. After water separation in the knockout drum, the gas is reheated and sent to the cleanup methanator. The effluent gas from the cleanup methanator is then compressed and dried in a dehydration unit before delivery to the pipeline.

The dehydration unit consists of an absorber and a regenerator. In the absorber, the gas is dehydrated by a glycol solution. The glycol solution is regenerated by steam-stripping and recycled to the absorber.

PROBLEM SCOPE

Your company is considering installation of a coal-based SNG plant and you are a member of the study team assigned to this project. Other team members have studied and selected gasification, syngas shift, and purification sections. Your assignment is to develop an optimum methanation plant design based on the feed gas composition and product specifications listed in Table 1.

Many processing options for a methanation plant will produce a workable design. Any number of bulk

methanators with interreactor cooling for heat removal may be used, along with steam injection and/or product gas

recycle for temperature moderation.

In this case, previous studies indicate that steam injection need not be considered. The principal focus is on the tradeoff between the number of bulk methanators with interreactor cooling versus the recycle gas rate. A system consisting of one bulk methanator will require a very high recycle gas rate. On the other hand, a series of bulk methanators with interreactor cooling will require a lower recycle gas rate, but will entail higher reactor capital costs and a higher system pressure drop. Thus, there is a best case from the standpoint of capital and operating cost.

In addition, optimization of the various heat exchange services is important. Various process streams may be heated with steam or hot process gas and they may be cooled by steam generation, cool process gas, boiler feed

water, or cooling water.

The criterion for selecting the process alternatives should be the lowest present worth of capital cost plus operating costs over 20 years, which yields a mimimum 17 percent rate of return on incremental investment.

Equipment should be designed to handle start-of-run operation with a fresh catalyst and end-of-run operation with reduced catalyst activity. Equipment necessary for startup of the plant should also be included.

Prepare your report in the format described in the Final Report Format. Use the information provided in the Design Guidelines and the Economics Guidelines for your study.

FINAL REPORT FORMAT

A. Cover Letter or Transmittal Document

B. Introduction — Give a concise statement of the problem, covering background and objectives.

C. Summary — Submit a brief description of work performed in your evaluation, and your conclusions and/or recommendations.

D. Technical Information:

1. A process flow diagram of a methanation plant showing the methanation reactors, drums, compressors, heat exchanger arrangement, special equipment for startup and shutdown (if any), and major process controls. The flow diagram should show temperature (°F) and pressure (psia) for each stream.

Assign numbers and names to all equipment and label streams with numbers on the flowsheet. These numbers should be used to identify equipment and streams in any table and discussion.

2. A material balance table showing the following for each stream:

Temperature (°F)

Pressure (psia)

Total flow rate (lb/hr and lb-mole/hr)

Component flow rate (lb-mole/hr)

The process flow diagram and material balance table should show a consistent case (start-of-run or end-of-run), whichever case controls most of the equipment design.

3. An equipment list for the plant. The list should include the following information for each equipment item in addition to its name and number.

Equipment Type

Compressors

Minimum Required Information

 Pressure and temperature at inlet and outlet

Efficiency

Energy consumption, in brake horsepower

Fluid composition and properties Duty

Heat exchangers

Area

Stream temperatures

• Temperature difference (corrected)

Pressure at inlet and outlet

Fluid composition and properties Exchanger type and materials of construction

Inside diameter Pressure vessels

Cylindrical section length or height

Shell thickness (inches)

Type of heads Materials of construction

Catalyst volume and type Operating pressure, pressure and temperature design

Brake horsepower

Rates, conditions, and enthalpies

of steam and condensate

Motor drivers Horsepower

For each equipment item, determine whether its size is set by the start-of-run or end-of-run conditions as discussed in the theory section. Indicate whether start-of-run or end-of-run controls the equipment size and provide an explanation.

4. A utilities summary showing users (or generators) of utilities, tabulated by equipment. Show the rate of consumption (or generation) for each piece of equipment for

both start-of-run and end-of-run.

Steam (1,000 lb/hr) at each pressure level

Electricity (kW)

Steam turbine

drivers

Cooling water circulation (gpm)

Boiler feed water (gpm)

Steam condensate (gpm)

Steam generator blowdown (gpm) 5. A cost summary for the selected design, listing the capital cost of each piece of equipment and the total installed plant cost. Also include an operating cost summary broken down into utilities, catalyst and chemicals, labor,

6. An explanation for your choice of design. Submit a summary table showing the following for each case examined.

Number of reactors

Recycle compressor horsepower

Total capital costs

Annual operating cost in current dollars

20-year present value of capital and operating costs

E. Appendix

The appendix of the report should include an explanation of all assumptions made and calculation method used. Calculations, graphs, tables, etc., necessary for a complete understanding of your solution should be included.

DESIGN GUIDELINES

Flow rate, composition, and properties of the feed and product gases are specified in Table 1. Other designrelated information is in Tables 2 to 5.

For the methanator mass and heat balance calculations, actual reactor outlet gas composition versus actual reactor outlet temperature is provided in Table 3. These compositions were computed using the equilibrium constant data from Table 2 and the indicated feed pressures and approach ΔT as in Table 3. At a given reactor outlet temperature and pressure, the reactor outlet composition is a function of the atomic ratios, percent inerts, and approach ΔT . Since atomic ratios are unaffected by chemical reactions, recycling some of the product gas to the feed does not affect the atomic ratios as long as no material is removed from the recycle stream. Tables 3a and 3b can be used for bulk methanators with and without recycle. Removal of water from bulk methanator products changes the atomic ratio. Tables 3c through 3f provide data for the cleanup methanation calculations. Neglect pressure effects for our range of operation. Linear interpolations of these tables will give valid results.

For this study, neglect corrections to gas enthalpy due to

Compressors are conventional centrifugal type. The maximum discharge temperature is 450°F. The adiabatic efficiency is 75 percent. Maximum compression ratio is

Compressors can be driven by either electric motors or steam turbines. Motor efficiency is 90 percent. Maximum moisture content for the steam turbines at isentropic exhaust conditions is 16 percent. Efficiency of steam turbines is given in Figure 5.

In determining equipment operating pressures, use 0.5 psi pressure drop for the connecting piping between two

pieces of equipment.

Use the following general guidelines for vessel design: Maximum diameter is 16 feet because of shop fabrica-

tion and transportation limitations

For vessel wall thickness and weight calculations, see Reference 1; pp. 6-91 to 6-105. Use same allowable stress for low alloy steel as carbon steel.

 Design pressure (psig) = (1.1 × operating pressure in psia) - 14.7,

50 psi + operating pressure in psig, whichever is greater

• Design temperature = 50°F + operating temperature (600°F, minimum)

1/8 inch for corrosion allowance

• Total vessel weight = $1.1 \times$ (weight of cylindrical section + weight of heads). This factor accounts for nozzles, flanges, skirts, and other parts of the vessel.

Use the following for general basis for reactor design: · Calculate the catalyst bed pressure drop for the methanator and ZnO guard reactors using the correlation given by Leva for incompressible fluids (Reference 1, p. 5-52). Both the catalyst shape factor and the modified friction factor are 1.0. Use the gas density at reactor outlet temperature for the average density

Assume the pressure drop for nozzles, distributor, and supports is equivalent to 3 feet of bed height

All reactors should be axial downflow vertical vessels

The methanator sizing basis and configuration are as

Reactor space velocity is 15,000 soft of total reactor feed

gas per cubic foot of catalyst

Minimum catalyst bed depth is $0.5 \times$ bed diameter If hemispherical heads are used, the catalyst bed and supports may extend into the vessel heads up to 15 percent of the vessel diameter. If ellipsoidal heads are used, the catalyst bed may not extend into the heads.

The ZnO reactor sizing basis and configuration are as

Assume that 1 lb of ZnO adsorbs 0.15 lb of H₂S

Set amount of ZnO for 2-year life, minimum

Use minimum ZnO bed depth of 0.5 x bed diameter Parallel reactors may be used to minimize pressure drop.

In designing condensate knockout drums:

Use vertical cylindrical vessels

Size the drum to settle out water droplets greater than 300 microns. See reference 1, pp. 5-61 to 5-62

Allow 5 minutes of liquid residence time above the bottom tangent line

 Provide 3 feet above the inlet nozzle to the top tangent line for disengagement space

For all heat exchange equipment, assume the following: • The thermal resistance of the tube wall is 0.0004 hr-ft²-

The fouling factor on each side of the tube is 0.001 hr-ft2-°F/Btu for gas and BFW services, 0.0005 for steam generation and condensation, and 0.002 for cooling

• Gas side $\Delta p = 5$ psi

For the waste heat boilers, assume the following:

The boilers are of the kettle type

Blowdown is 2 weight percent of boiler feedwater
 hboiling = 1,000 Btu/hr-ft²-°F (referred to outside tube

h_{gas} = 125 Btu/hr-ft²-°F (referred to outside tube area)

For the gas-gas heat exchangers, assume the following: • has = 125 Btu/hr-ft2-°F (referred to outside tube area)

For the water-gas exchangers, assume the following:

Water is on the tube side

all alternative cases.

Maximum cooling water temperature rise is 40°F

hwater = 500 Btu/hr-ft2-°F (referred to outside tube area)

h_{gas} = 100 Btu/hr-ft²-°F (referred to outside tube area)

For selection of material of construction, use the following criteria for gas streams:

Temperature, °F	Mol% H ₂	Material
>600	all	low alloy steel
<600	<5	carbon steel
<600	>5	low alloy steel

Use carbon steel for the shells of waste heat boilers and

water-cooled gas coolers. The dehydration unit does not need to be taken into account in this study because it is essentially the same for

ECONOMIC GUIDELINES

Alternative designs are to be compared on the basis of the 20-year present value of capital costs plus operating costs. This method is often used in making comparisons of different designs.

No alternative design that produces less than a 17 percent rate of return on incremental capital cost should be chosen. The rate of return on incremental investment is defined as follows: (Reference 2, Chapter 9)

$$ROR = \frac{S}{I} \times 100\%$$

ROR = rate of return on incremental investment

I = incremental capital cost

S = present worth of savings (over 20 years) resulting from an incremental investment of I dollars

The present worth of operating, or direct, costs is calculated using the following assumptions:

Time value of money = 11%/year
Cost escalation rate = 8%/year

Interest compounded annually

Expenses paid annually, at end of year Estimated plant life = 20 years (zero salvage value)

330 operating days per year To estimate the installed capital cost for the methanation plant, you may use a "factored estimate." A factor is applied to the purchased cost of each major equipment item (vessels, reactors, compressors, exchangers, etc.) to account for costs associated with: (1) Piping, insulation, instruments, electrical supply, foundations, etc., and (2) Engineering, construction labor, and supervision. Based on experience, a factor of 4 is applicable to this plant.

Operating costs for utilities, catalysts, and chemicals can be computed directly for each alternative design. Other annual operating costs are assumed as:

Maintenance: 4% of installed capital cost
Operating labor: \$600,000 yr regardless of design case

• Insurance, property taxes, administration: 6% of installed capital cost

Purchase costs of major equipment are given in Figures 3 through 5. Utility costs are given in Table 6. Catalyst costs are given in Table 4.

NOMENCLATURE

 $MM = 10^6$

HHV = higher heating value; heat of combustion of 1 scf of gas to gas products and liquid water at 60°F and 1 atmosphere

scf = standard cubic feet at 60°F and 1 atmosphere. 1 lb mole = 379.5 scf

scfd = standard cubic feet per day scfh = standard cubic feet per hour

h = film heat-transfer coefficient based on outside tube area, Btu/hr-ft²-°F

Table 1

FEED AND PRODUCT SPECIFICATIONS

Item	Feed	Product
Gas composition, mel 2		
· CH ₄	15.60	
co	16.50	0.1 mol 2 max
co ₂	4.15	3.0 mol % max
H ₂	63.40	5.0 mol % max
κ ₂	0.35	
н ₂ о	NIL	4 lb/Miscf ma
H ₂ S	0.1 ppm	_
Rate	390 Mscfd	
Pressure	360 psia	1,000 psia
Temperature	65 ° F	120°F max
HHV, Btu/scf		950 min

REFERENCES

- 1. Perry, R. H., and C. H. Chilton, Chemical Engineers' Handbook, 5th Ed., McGraw Hill, New York, 1973.
- 2. Peters, M. S., and K. D. Timmerhaus, Plant Design and Economics for Chemical Engineers, 3rd Ed., McGraw-Hill, 1980.
- 3. United Catalyst Inc., Physical and Thermodynamic Properties of Elements and Compounds
- Properties of Elements and Compounds.

 4. Moeller, F. W., H. Roberts, B. Britz, "Methanation of Coal Gas for SNG," Hydrocarbon Processing, April 1974.
- Allen, D. W., and W. H. Yen, "Methanator Design and Operation," Chemical Engineering Progress, January 1973.

PROCESS FLOW DIAGRAM
METHANATION OF COAL DERIVED
SYNTHESIS GAS FOR THE SNG PRODUCTION

, k , D

g. 'asn	Water (Water (gas) H ₂ O		Hydrogen (gas) H ₂	(gas) H ₂	Nitrogen (gas) N ₂	184) N ₂	Carbon Mo	Carbon Monoxide (gas) (**)	0.0 (2)	Carbon Doxide (gas) CO;	oxide (gas	,000	Methane	(gas)	i 5 :
1618	Mot. wt = 18.015 b p = 212°F. m p = 32°F. d., = 62.3 New f T, = 795.4 F P, = 3206 pds	Mod. wt = 18.015 b p = 212°F. mp = 32°F. dd. = 62.3 lb/cw ft at 66°F. T, = 725.4 F. P, = 3296 pole	4	Mal. wt 2.0159 hp = -421 F mp = -4346 F* d ₁₁ = -442 liven R T ₁ = -440 F F ₁ = 188 pvia	20139 423 F 434 F 42 Biven ft at 423 F 400 F	Mol. wt - 28.013 b.p 320.5 F m.p. > 36.0 F° d., > 30.4 Hou B T 232.8 F P, - 492.3 psin	28,013 320,5 F 346,0 F 04 lives B at 320,4 F 222,8 F	Mol. wt = 28.011 bp = 342.7 F mp = 347.1 F d ₁₁ = 508 lb/cm T ₁ = -218.2 F F ₁ = 514 pcla	Mod. wt = 28.011 b p = 312.7 F dp = 342.1 F T, = 508 lb/cuft at =319 F T, = -218.2 F P, = 514 pola	316.1	Mid. wt = 44.010 bp = 109.1 F/c mp = 64.2 F/c d., = 68.7 H/cu R T, = 88.F	Mol. wt = 44.010 by = 109.1 F (sublines) mp = 69.2 F (5.2 atm) d., = 68.7 lb/cu ll at = 34.6/F T, = 181.F F, = 1073 pcla	imes) imi - M.G.F	Med. wt = 16.043 h p = -288.7 F in p = -286.5 F d., = 25.9 lb/cu f T, n = 16.5 F F, = 6.77 pda	Mod. wt = 16.843 h p = -288.7 F dn = 286.5 F dn = 25.9 lb/cu ft at =263.2 F T, n = 116.5 F P, = 637 pda	- 263.2 F
dmaT	. 11; + Alf Rush mole	LegKr	Ch. Braffs mole 'F'	H H: Buth male	C., Bludh mole F	H 11. Brufh mole	C. Budb	H H; · MB; Rtufb mele	- Page Kr	C. Readh	11 H., 1.311; Hudb mole	fren.K.	C. Healb mole F	II' - II; + AII's Rtulb mole	Lag.,K,	Ct. Haudh male F
-		911017		At 1	7184	1417	b) 6 4	-45.546	25.8214	6.959	-165,509	75.4005	8.5%	24,834	10.0893	A. 296
2	-98,890	41.72.18	\$10 8	1.536	6.87	1,612	096.9	-45,351	24.6811	6.962	-165,265	71.3461	8.768	. 24,605	9.3263	R.440
3 ;	100.07	40.0470	8.026	3,643	6. HH.7	1,730	6 960	-45,233	24.0479	6.965	-165,115	69,0915	8.870	-24,462	8.8985	8.537
: 5	771 86	18 1051	8.039	3,802	\$06.9	068'1	6.46.2	-45,073	13.2517	896.9	-164,909	66.2567	010.4	-24,264	8.3547	R.665
2	-97.538	32.1369	8.122	4.494	6.953	4.587	6.976	-44,375	20.4419	066.9	-163,979	\$6.2342	9.565	.23,370	6.4122	9.106
	2	31 5833	11.0	5.193	6.977	5.286	7,004	-43,674	18,3757	7.032	-162,997	48.8521	10.058	22,402	4.9584	10.033
B	07/'04-	34 0794	8 350	5.891	6.9N7	SORR	7.047	-42,968	16.7917	1.091	-161,969	43.1866	10.499	-21,362	3.8206	10.811
	- 45.04B	21 1002	807	065'9	6.99.3	964.4	7.107	-42,255	15.5379	7.167	-160,899	38.6999	10.891	20,241	3.9006	11.604
2 5	64 10	19 0410		7,289	7 (9) 7	7,410	7.180	-41,534	14.5200	7.256	-159,792	35.0585	11.243	19061-	2.1393	12,189
<u> </u>	-93.319	17.1669		1,991	7.014	R.133	1.262	-40,804	13.6770	7.352	-158,652	32.0451	11.560	17,764	1.4996	13.149
3		14 4838		8.604	7.0.10	8,86,3	12.51	-40,063	12.9668	7.450	-157,481	29.5103	11.846	[16,41]	0.9543	13,877
	16 8 76-	14 3180		9,400	7.052	6,603	7.440	-39,313	12.3590	7.548	-156,283	27.3460	12.111	-14,991	0,4837	14.569
	976,14-	110011		10.107	7.080	10.152	01.8.7	-38,554	11.8341	7.643	-155,060	25.4793	12.344	-13,501	0 07 26	15.227
000	1 0 0 0 V	12 0520		10.817	7.112	E	7.618	-37,784	11.3750	1.733	-153,814	23.8507	12.560	-11,947	0.2896	15.850
9 6	-88.714	11.1545		11.530	1.151	11,875	1.705	-37,007	10.9707	7.820	-152,550	22.4188	12.754	-10,331	0.6117	16.438
	17 741	10.1574	000	12.248	7.193	12.650	7.785.	-36,221	10.6113	1.901	-151,266	21.1483	12.930	- 8,658	0.9002	17.000
3 5	-86.753	9.6453		12.970	7.34	13,433	7.861	-35.427	10.2895	7.977	-149,964	20.0147	13.088	- 6.929	1.1581	17.513
2	01 10	0.000	_	13.697	1 392	14,223	1.912	-34,626	9.9997	8.044	- 148,648	18.996\$	13.234	- 5,163	1.3901	17.995
3 5	-84 737	8 4761		14.429	7.144	15.021	8,000	-33,818	9.7373	\$100	-147,318	18.0768	13.366	3,349	1.6008	18,444
200	-83.687	7,9003		13.167	7,199	15,825	R.06.3	-33,004	9.4990	8.167	-145,975	17.2425	13,489	1.471	1.7930	1R 878
	157 68	7 4107		3	7.655	16.634	8.120	-32,184	9.2800	8.223	-144,618	16.4805	13.599	439	1,9693	19,279
3 8	633.10	0000		16.660	7.512	17,449	8.175	-31,359		8.274	-143,253	15.7840	13.701	1,397	-2.1313	10,648
2	10 477	6.5758		17.414	7.570	18,269	H.224	-30,529	8.8944	8.322	-141,879	15.1434	13.797	4,372	2.2799	19.985
3100	76 178	6.2028		18,174	7.629	19,093	R.271	-29.694	8.7236	8.366	-140,492	14.5530	13,885	6,394	2.4169	20,306
2200	-78.264			18.939	7.685	19.922	8.313	-28,856	8.5651	8.406	-139,100	14.0072	13.960	8,434	2.5438	20.595

*triple point

Notes:

1. The standard state of gaseous elements and compounds shown in this table is that of an ideal gas at atmospheric pressure.

2. (1Γ - 1Ε, + ΓΕ,) = h' is a combined ideal gas enthalpy and heat of formation term that can be used to compute the heat of reaction at any given temperature.

Δh' = (ΣηΓ) products = (ΣηΓ) reactants where η is the mole fraction of component i, Δh' is the heat of reaction at any given temperature.

3. K, is the equilibrium constant of formation from the elements. Logack's Szero for an element.

4. C, is the ideal gas specific heat at constant pressure. (C)mann = ΣηΓς where η is the mole fraction of component i, C_p is the specific heat of component t.

Table Ja

BULK METHANATION

PRESSURE (PSIA) 320.0		ROACH (DESF)		RATIO(C/H 192		M RATIO(C. .462	/0)
		~	DOMENT M	OL PERCENT			
	H20	H2	N2			CH4	TOTAL
FEED COMPOSITION		63.40					100.00
REACTOR EFFLUENT TO							
T- (DEGF)	<u>H20</u>	<u>H2</u>	<u>N2</u>	<u>co</u>	<u>C02</u>	CH4	TOTAL
760	35.42	5.23	.57	.03	2.38	56.37	
770	35.24	5.50	.57	-04	2.44	56.22	
780	35.01	5.82	.57	.04	2.52	56.04 55.86	61.86
790	34.79	6.15	.56	.03	2.59	33.60	
800	34.57	6.47 6.80	.56 .56	.06	2.66 2.74 2.81	55.68	62.08
810			.56 .56	.06 .07	2.74	55.49 55.31	62.18 62.29
B20	34.12 33.89	7.13 7.45	.56	.08	2.88	55.13	62.40
830 840		7.45	.56		2.96	54.94	
			.56	.11	3.04	54.72	62.64
85 0 8 60	33.40 33.14	B.17 B.56	.56	.12	3.12	54.50	
870	32.87		.56	.34	3.21	54.28	
880	32.60	9.34	.56	.15	3.29	54.05	63.04
890	32.33	9.74	.55	.17	3.37	53.83	
000	22.06	10.15	.55	.20	3.46	53.59	63.32
900 910	31.74	10.61		.20 .22	3.55	53.33	63.49
920	31.50			24	3.62	53.12	
930	31.19		55'	27	3.71	52.85	
940	30.86	11.43 11.92	.55	.31	3.80	52.56	63. 9 6
950	30.57	12.34	.55	. 34		52.31	
960		12.78	.55 .54	.38	3.96	52.06	64.28
970	29.94	13.28	.54	.43	4.05 4.14	51.75 51.45	64.47 64.66
980	29.60	13.80	.54	.48	4.14	31.43	04.00
		TAD	le 3b				
BULK METHANATIO PRESSURE (PSIA) APF	REACTOR EFF	ATO		н) дт	ОМ RAT IO(C/O)
) APF	REACTOR EFF ROACH (DEGF) 50.0	LUENT_COM	RATIO(C/	H) AT	OM RATIO(c/o)
PRESSURE (PSIA) APF	REACTOR EFF PROACH (DEGF) 50.0	LUENT_COM ATOM MPONENT !	e RATIO(C/) 192 MOL PERCEN	H) AT	ОМ RATIO(1.462 <u>СН4</u>	
PRESSURE (PSIA 320.0	<u>H20</u>	REACTOR EFF PROACH (DEGF) 50.0 CO	LUENT_COM ATOM MPONENT 1 N2	e RATIO(C/) 192 MOL PERCEN	H) AT T <u>CO2</u>	1.462 <u>CH4</u>	TOTAL
PRESSURE (PSIA	H20 0.00	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40	ATOM MPONENT 1 N2 .35	* RATIO(C/) .192 MOL PERCEN CO	H) AT T <u>CO2</u>	1.462 <u>CH4</u>	TOTAL
PRESSURE (PSIA 320.0	H20 0.00	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40	ATOM MPONENT 1 N2 .35 SITION	* RATIO(C/) .192 MOL PERCEN CO	H) AT T CO2 4.15	1.462 <u>CH4</u>	TOTAL 100.00
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT T T-(DEGF)	H20 0.00 TEMPERATUR	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO	ATOM MPONENT 1 N2 .35 SITION K2	MOL PERCEN CO 16.50	CO2 4.15	CH4 15.60	TOTAL 100.00
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT T T-(DEGF) 760	H20 0.00 TEMPERATUR H20 34.41	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO	MPONENT 1 M2 .35 SITION M2 .56	E RATIO (C/I 192 MOL PERCEN CO 16.50	T CO2 4.15	CH4 15.60 CH4 55.56	TOTAL 100.00 TOTAL 62.15
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE COMPOSITION 7- (DEGF) 760 770	H2O 0.00 TEMPERATUR H2O 34.41 34.15	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO H2 - 6.70 7.08	MPONENT 1 M2 .35 SITION M2 .56 .56	MOL PERCEN CO 16.50	CO2 4.15	CH4 15.60	TOTAL 100.00
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT T T-(DEGF) 760	H20 0.00 TEMPERATUR H20 34.41	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO	MPONENT 1 M2 .35 SITION M2 .56	MRATIO(C/I	T CO2 4.15 CO2 2.73 2.81	CH4 15.60 CH4 55.56 55.35	TOTAL 100.00 TOTAL 62.15 62.27
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT T T-(DEGF) 760 770 780 790	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO H2 - 6.70 7.08 7.40 7.72	MPONENT 1 N2 .35 SITION N2 .56 .56 .56	MOL PERCEN CO 16.50 CO .05 .06 .06 .07	CO2 4.15 CO2 2.73 2.81 2.88 2.96	CH4 15.60 CH4 55.56 55.35 55.17	TOTAL 100.00 TOTAL 62.15 62.27 62.38
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE COMPOSITION 760 770 780 790 800	H2O 0.00 TEMPERATUR H2O 34.41 34.15 33.93 33.70 33.41	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 12 6.70 7.08 7.40 7.72 8.16	MPONENT 1 N2 .35 SITION N2 .56 .56 .56	MRATIO (C/) .192 MOL PERCEN CO .16.50 CO .05 .06 .06	T CO2 4.15 CO2 2.73 2.81 2.88	CH4 15.60 CHA 55.56 55.35 55.17 54.98	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT 1 T-(DEGF) 760 770 780 790 800 810	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO H2 - 6.70 7.08 7.40 7.72	MPONENT 1 M2 .35 SITION M2 .56 .56 .56 .56	MRATIO (C/I .192 MOL PERCEN CO 16.50 CO .05 .06 .07	CO2 4.15 CO2 2.73 2.81 2.88 2.96 3.05 3.13 3.21	CH4 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE COMPOSITION 760 770 780 790 800	H20 0.00 TEMPERATUR H20 34.41 33.93 33.70 33.41 33.18	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO H2 - 6.70 7.08 7.40 7.72 8.16 8.48	MPONENT 1 N2 .35 SITION N2 .56 .56 .56 .56 .56	MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12	CO2 4.15 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29	CH4 15.60 CH4 55.56 55.35 55.17 54.98 54.74 54.56 54.34	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT T T-(DESF) 760 770 780 790 800 810 820	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70 33.41 33.18 32.92	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 7.08 7.08 7.40 7.72 8.16 8.48 8.87	MPONENT 1 1 2 . 35 . 35 . 35 . 56 . 56 . 56 . 56 . 56	MRATIO (C/I 192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07	CO2 4.15 CO2 2.73 2.81 2.88 2.96 3.05 3.13 3.21	CH4 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE COMPOSITION TO THE COMPOS	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66	REACTOR EFF ROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 7.08 7.40 7.72 8.16 8.48 8.87 9.25	MPONENT 1 N2 .35 SITION N2 .56 .56 .56 .56 .56 .56 .56 .56	E RATIO (C/I .192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14	CO2 4.15 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47	CH4 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.87	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE CONTROL TO THE CO	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82	REACTOR EFF ROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 7.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48	MPONENT 1 N2 .35 SITION N2 .56 .56 .56 .56 .56 .56 .56 .56 .56 .55	MRATIO (C/I).192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17	CO2 4.15 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55	CH4 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.87 53.65 53.42	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29 63.43
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE T	H2O 0.00 TEMPERATUR H2O 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82 31.82	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 7.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48 10.93	MPONENT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MRATIO (C/I).192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17 .20	CO2 4.15 CO2 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55 3.65	CH4 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.87	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29 63.29 63.43 63.59
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE COMPOSITION TO THE CO	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82 31.51 31.24	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 7.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48 10.48 11.33	MPONENT 1 N2 .35 SITION N2 .56 .56 .56 .56 .56 .56 .56 .56 .55 .55	MRATIO (C/I).192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17 .20 .22	CO2 4.15 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55 3.65 3.73	CH4 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.87 53.65 53.42 53.17 52.93	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29 63.43 63.59 63.73
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE T	H2O 0.00 TEMPERATUR H2O 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82 31.82	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 7.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48 10.93	MPONENT 1 N2 .35 .35 .56 .56 .56 .56 .56 .56 .55 .55 .55	E RATIO (C/I).192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17 .20 .22 .25	CO2 4.15 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55 3.65 3.73 3.81	CH4 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.87 53.65 53.42 53.17 52.93 52.70	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 63.00 63.15 63.29 63.43 63.59 63.73 63.88
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE T	H2O 0.00 TEMPERATUR H2O 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82 31.51 31.24 30.97	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 7.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48 10.93 11.33 11.74 12.20	MPONENT 1 1 1 2 1 3 5 1 5 6 1	E RATIO (C/I).192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17 .20 .22 .25 .28	CO2 4.15 CO2 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55 3.65 3.73 3.81 3.90	CH4 15.60 CHA 15.60 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.87 53.65 53.17 52.93 52.70	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29 63.43 63.59 63.73 63.88
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT 1 T-(DESF) 760 770 780 790 800 810 820 830 840 850 860 870 880 890 990	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82 31.51 31.24 30.97 30.65 30.29	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 7.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48 10.48 11.33 11.74 12.20 12.74	MPONENT 1 N2 .35 SITION N2 .56 .56 .56 .56 .56 .55 .55 .55 .55 .55	E RATIO (C/I).192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17 .20 .22 .25 .28 .31	CO2 4.15 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55 3.65 3.73 3.81 3.90 4.00	CH4 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.87 53.65 53.42 53.17 52.93 52.70	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29 63.43 63.59 63.73 63.88 64.05 64.24
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE T	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82 31.51 31.24 30.97	REACTOR EFF ROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 10.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48 10.93 11.33 11.74 12.20 12.74 13.16	MPONENT 1 N2 .35 SITION N2 .56 .56 .56 .56 .56 .56 .55 .55 .55 .55	E RATIO (C/I).192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17 .20 .22 .25 .28 .31 .35	CO2 4.15 CO2 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55 3.65 3.73 3.81 3.90 4.00 4.08	CH4 15.60 CHA 15.60 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.87 53.65 53.17 52.93 52.70	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29 63.43 63.59 63.73 63.88
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE T	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82 31.51 31.24 30.97 30.65 30.29 30.01 29.64	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 7.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48 10.48 11.33 11.74 12.20 12.74	MPONENT 1 N2 .35 SITION N2 .56 .56 .56 .56 .56 .55 .55 .55 .55 .55	E RATIO (C/I).192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17 .20 .22 .25 .28 .31	CO2 4.15 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55 3.65 3.73 3.81 3.90 4.00	CH4 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.87 53.65 53.42 53.17 52.93 52.70	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29 63.43 63.59 63.73 63.88 64.05 64.24
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE T	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82 31.51 31.24 30.97 30.65 30.29 30.01 29.64 29.35	REACTOR EFF PROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 7.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48 10.33 11.74 12.20 12.74 13.16 13.70 14.15	MPONENT 1 N2 .35 SITION N2 .56 .56 .56 .56 .56 .55 .55 .55 .55 .55	E RATIO (C/I).192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17 .20 .22 .25 .28 .31 .35 .39 .43	CO2 4.15 CO2 4.15 CO2 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55 3.65 3.73 3.81 3.90 4.00 4.08 4.18 4.25	CH4 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.67 53.65 53.42 53.17 52.93 52.70 52.43 52.11 51.87 51.54 51.28	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29 63.43 63.59 63.73 63.88 64.05 64.24 64.40 64.60 64.77
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE T	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82 31.51 31.24 30.97 30.65 30.97	REACTOR EFF ROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 10.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48 10.93 11.33 11.74 12.20 12.74 13.16 13.70 14.15	MPONENT 1 N2 .35 SITION N2 .56 .56 .56 .56 .56 .55 .55 .55 .55 .55	E RATIO (C/I.192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17 .20 .22 .25 .28 .31 .35 .39 .43	CO2 4.15 CO2 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55 3.65 3.73 3.81 3.90 4.00 4.08 4.18 4.25 4.34	CH4 15.60 CHA 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.87 53.65 53.42 53.17 52.93 52.70 52.43 52.11 51.87 51.54 51.28 50.98	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29 63.43 63.59 63.73 63.88 64.05 64.24 64.40 64.60
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE T	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82 31.51 31.24 30.97 30.65 30.29 30.01 29.64 29.35	REACTOR EFF ROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 7.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48 10.93 11.33 11.74 12.20 12.74 13.16 13.70 14.15	MPONENT 1 1 1 2 . 35 . 35 . 35 . 35 . 35 . 35 . 35 .	MRATIO (C/I).192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17 .20 .22 .25 .28 .31 .35 .39 .43 .48 .54	CO2 4.15 CO2 4.15 CO2 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55 3.65 3.73 3.81 3.90 4.00 4.08 4.18 4.25	CH4 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.67 53.65 53.42 53.17 52.93 52.70 52.43 52.11 51.87 51.54 51.28	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29 63.43 63.59 63.73 63.88 64.05 64.05 64.05 64.77
PRESSURE (PSIA 320.0 FEED COMPOSITION REACTOR EFFLUENT TO THE T	H20 0.00 TEMPERATUR H20 34.41 34.15 33.93 33.70 33.41 33.18 32.92 32.66 32.35 32.09 31.82 31.51 31.24 30.97 30.65 30.97	REACTOR EFF ROACH (DEGF) 50.0 CO H2 63.40 RE AND COMPO 10.08 7.40 7.72 8.16 8.48 8.87 9.25 9.69 10.08 10.48 10.93 11.33 11.74 12.20 12.74 13.16 13.70 14.15	MPONENT 1 N2 .35 SITION N2 .56 .56 .56 .56 .56 .55 .55 .55 .55 .55	E RATIO (C/I.192 MOL PERCEN CO 16.50 CO .05 .06 .06 .07 .08 .09 .11 .12 .14 .16 .17 .20 .22 .25 .28 .31 .35 .39 .43	CO2 4.15 CO2 4.15 CO2 2.73 2.81 2.88 2.96 3.05 3.13 3.21 3.29 3.39 3.47 3.55 3.65 3.73 3.81 3.90 4.00 4.08 4.18 4.25 4.34 4.43	CH4 15.60 CHA 15.60 CHA 55.56 55.35 55.17 54.98 54.74 54.56 54.34 54.12 53.67 53.65 53.17 52.93 52.70 52.43 52.11 51.87 51.54 51.28 50.98 50.66	TOTAL 100.00 TOTAL 62.15 62.27 62.38 62.49 62.63 62.74 62.87 63.00 63.15 63.29 63.43 63.59 63.73 63.88 64.05 64.24 64.00 64.77

REACTOR EFFLUENT COMPOSITIONS

Note: Product composition is shown in mole percent. The "total" amount is the moles of product per 100 miles of feed.

		Tabl	e 3c				
CLEANUP METHANATI	ON E	EACTOR PIL	пем сов	SITIONS			
PRESSURE (PSIA)		DACH (DEGF)	ATOM :	RATIO(C/H) 43		RATIO(C/ .B00	(0)
		COP	PONENT MO	L PERCENT			
	H20	<u>B2</u>	<u>N2</u>	<u>co</u>	<u>co2</u>		
FEED COMPOSITION USED AS BASIS -	.56			.22	5.01	78.99	100.00
REACTOR EFFLUENT TE	MPERATURE	AND COMPOS	ITION				-
T- (DEGF)	2 20	<u>#12</u>	<u> 145</u>	<u>∞</u>	COS	CH4	TOTAL
	7.91	.65	.87	.00	1.85	88.71	92.99
560	7.88	.72	.87	.00	1.B6	BB.67	93.02
570	7.85	.78	.87	.01	1.88	88.62	93.05
580	7.81	.85	.87	.01	1.89	88.58	93.08
590	7.01						93.11
	7.78	.91	.87	.01	1.91	B8.53	93.15
600	7.73	.99	.87	.01	1.92	88.47	93.19
610	7.69	1.07	.87	.01	1.94	88.42	93.23
620	7.65	1.16	.87	.01	1.96	88.36	
630	7.60	1.24	.87	.01	1.98	88.30	93.27
640	7.60						
	7.55	1.34	.87	.02	2.00		93.31
650		1.44	.86	.02	2.02	88.16	
660	7.50	1.54	.86	.02	2.05	88.08	93.41
670	7.44		.86	.03	2.07	88.01	93.46
680	7.39	1.64	.86	.03	2.09	87.92	93.52
690	7.33	1.76	. 60				
			.86	.03	2.12	87.85	
700	7.27		.86	.04		87.76	93.63
710	7.21	1.99		.05	2.17	87.65	93.70
720	7.13	2.13	.86	.05		87.57	
730	7.08	2.24	. B6		2.22	87.47	
740	7.00	2.39	. B 6	.06	2.22		
. 40					2.75	87.36	93.91
750	6.92	2.54	.86	.07			
760	6.85	2.69	.86	.08			
770	6.77	2.85	.86	.09		87.02	
	6.70	2.99	. 8 6	.10		86.88	
780	6.61	3.17	.86	.12	2.37	80.00	74.23
790							
		T	able 3d				
CLEANUP METHANA	TION	REACTOR E	ELTTENT_C	POSITIO			
	,	PPROACH (DEG	F) AT	OM RATIO	C/H) J	TOM RATIO	(C/O)
PRESSURE (PSIA	.,	10.0		.236		5.176	
300.0		10.0					
			COMPONENT	MOL PERC	ENT		
				<u>co</u>		CH4	TOTAL
4	<u> 920</u>	<u>H2</u>	<u> M2</u>	<u> </u>	<u></u>		
FEED COMPOSITION USED AS BASIS -	5.72	13.67	.77	.21	4.75	74.8	9 100.00

ED COMPOSITION ED AS BASIS - EACTOR EFFLUENT TE	<u>#20</u>	H2	M2				
ED AS BASIS -			==	<u>co</u>	<u>CO2</u>	<u>014</u>	TOTAL
A CONTRACT OF THE	5.72	13.67	.77	.21	4.75	74.89	100.00
ACTUR EFFECTIVE AL	PERATURE I	AND COMPOS	ITION				
· (DEGF)	H20	<u>H2</u>	<u>N2</u>	<u>00</u>	<u>co2</u>	<u>CH4</u>	TOTAL
	12.91	.83	.82	.00	1.80	83.64	93.45
560	12.87	.91	.82	.00	1.81	83.59	93.49
570	12.83	.98	.82	.00	1.83	83.54	93.52
580	12.77	1.07	.82	.00	1.85	B3.48	93.56
590	12.77	2.0.					
		1.16	.82	.01	1.87	83.42	93.62
600	12.72	1.25	.82	.01	1.89	83.36	93.6
610	12.67	1.36	.82	.01	1.92	83.28	93.70
620	12.61	1.45	.82	.01	1.94	●3.22	93.7
630	12.56		. B2	.01	1.97	83.14	93.8
640	12.50	1.57	. 04				
	12.43	1.69	.82	.01	2.00	83.06	93.8
650		1.81	.82	.01	2.02	82.97	93.9
660	12.36	1.93	.81	.02	2.05	82.89	93.9
670	12.29	2.09	.61	.02	2.09	82.79	94.0
680	12.21		.81	.02	2.11	82.70	94.1
690	12.41	2.21		•			
	_		.81	.03	2.15	82.59	94.1
700	12.05	2.37	.61	.03	2.18	82.50	94.2
710	11.97	2.51		.04	2.22	82.38	94.3
720	11. 8 8	2.68	.81	.04	2.25	82.27	94.4
730	11.79	2.84	.81	-05	2.29	82.13	94.5
740	11.68	3.03	.81	.05	2.27		
				.05	2.33	82.02	94.€
750	11.59	3.19	.81	.06	2.36	B1.91	94.6
760	11.51	3.36	.81		2.41	81.76	
770	11.39	3.57	.81	.07		81.63	
780	11.29	3.75	.81	.08	2.44	81.48	
		3.96	.81	.09	2.48		
790 Note: Product comp		•		The "total"	amount is	the moles	of produc
Note: Product comp per 100 miles of fee	osition is sh	own in mo	e percent	, iic 10			

Table 3e

CLEANUP METHANATION

700 710

720 730 740 11.61

11.49

11.28

PRESSURE (PSIA) 300.0	ı	APPROACH (DEGF) 50.0		: RATIO(C/E 243		OM RATIO (0 7.800	C/O)
		co	PONENT N	OL PERCENT	•		
	H20	<u>H2</u>	<u>K2</u>	<u>co</u>	<u>CO2</u>	<u>CH4</u>	TOTAL
FEED COMPOSITION USED AS BASIS -	.56	14.42	.81	.22	5.01	78.99	100.00
REACTOR EFFLUENT TE	MPERATUR!	E AND COMPOSIT	ION				
T- (DEGF)	<u>H20</u>	<u>H2</u>	<u>N2</u>	<u>co</u>	<u>co2</u>	CH4	TOTAL
56 0	7.74	.98	.87	.01	1.92	88.48	93.14
570	7.69	1.06	.87	.01	1.94	B8.43	93.18
580	7.65	1.14	.87	.01	1.96	88.37	93.22
590	7.60	1.23	.87	.01	1.98	88.31	93.26
600	7.55	134	.87	.01	2.01	88.23	93.31
610	7.50	1.42	.86	.01	2.02	88.17	93.35
620	7.45	1.52	.86	.02	2.05	88.10	93.40
630	7.40	1.62	.86	.02	2.07	88.03	93.45
640	7.33	1.75	.86	.02	2.10	87.94	93.51
650	7.27	1.85	.86	.02	2.12	87.66	93.56
660	7.20	1.99	.86	.03	2.15	87.77	93.63
670	7.14	2.11	.86	.03	2.18	87.68	93.69
680	7.08	2.23	. 86	.04	2.20	87.59	93.75
690	7.00	2.37	.86	.05	2.23	87.49	93.82
700	6.93	2.51	.86	.05	2.26	87.39	93.89
710	6.85	2.66	.86	.06	2.29	87.28	93.96
720	6.78	2.81	.86	.07	2.32	87.17	94.03
730	6.70	2.96	.86	.08	2.35	87.06	94.11
740	6.62	3.11	.B6	.09	2.37	8€.95	94.19
750 .	6.53	3.30	.86	.10	2.41	86.80	94.29
760	6.46	3.44	.86	.12	2.43	86.69	94.36
770	6.36	3.63	.85	.13	2.47	86.55	94.46
780	6.28	3.80	.85	.15	2.49	86.42	94.55
790	6.19	3.98	.85	.17	2.52	86.28	94.65

MEACTOR EFFLUENT COMPOSITIONS

CLEANUF METHANATION REACTOR EFFLUENT COMPOSITIONS ATOM RATIO(C/O) 5.176 PRESSURE (PSIA) APPROACH (DEGF) ATOM RATIO (C/H) 300.0 50.0 .236 COMPONENT MOL PERCENT <u>co</u> <u>co2</u> CH4 TOTAL H20 H2 N2 FEED COMPOSITION USED AS BASIS -.21 .4.75 74.89 100.00 .77 REACTOR EFFLUENT TEMPERATURE AND COMPOSITION <u>C0</u> CO2 <u>CH4</u> TOTAL T- (DEGF) <u>H20</u> <u>H2</u> 1.90 1.92 1.94 1.97 83.36 83.29 83.22 93.65 93.70 93.75 93.80 12.68 1.25 .82 560 1.35 1.45 1.56 12.62 12.56 .82 .82 .82 .01 .01 .01 580 590 12.50 83.15 1.68 1.80 1.92 2.07 .82 .82 .81 .81 600 610 620 630 640 12.43 12.37 12.30 2.00 93.85 .01 83.07 .01 .01 .01 2.02 82.99 82.90 93.91 93.97 2.09 82.80 82.71 94.04 94.11 12.21 12.14 2.21 .02 .02 .03 .03 94.17 94.25 94.32 94.41 94.49 2.34 2.50 2.65 2.84 2.99 .81 .81 2.15 82.61 650 12.06 2.18 2.22 2.26 2.29 82.51 82.40 82.28 82.17 11.97 11.89 11.79 11.70 660 670 680 690 .81

Table 3f

Note: Product composition is shown in mole percent. The "total" amount is the moles of product per 100 miles of feed.

3.37 3.56 3.76 3.95

.81

.81 .81 .81 .04

.05 .06

2.33 2.38

2.42 2.46 2.50

82.06 81.91 81.77 81.64

81.50

94.57

94.68 94.77 94.87 94.97

Figure 3 UNIT HEAT EXCHANGER COST VS HEAT TRANSFER AREA

Table 4
CATALYST PROPERTIES

ltem	Bulk Methanation	Cleanup Methanation	ZnO
Form	Tablet	Tablet	Extrusion
Size	1/4" ¢ x 1/4"	1/4" ¢ x 1/4"	3/16" ¢ x 3/16"
Operating temperature range, *F	450-900	450-850	450-800
Void fraction	0.4	0.4	0.4
Life, yr	2	2	-
Bulk density, lb/ft3	60	50	70
Cost, \$/ft ³	400	520	110

Table 6
UTILITY COSTS

Table 5
UTILITIES AVAILABLE

Type	Condition
Steam: High pressure	600 psig, saturated
Medium pressure	150 psig, saturated
Low pressure	50 psig, saturated
Boiler feedwater	250°F
Cooling water	80°F
Ambient air	90°F

Electricity	\$0.06/kWh
600 psig steam, sat'd	\$8.00/1,000 16
150 psig steam, sat'd	\$7.00/1,000 15
50 psig steam, sat'd	\$6.00/1,000 1b
Cooling water circulation	\$10/gpm/yr
Steam turbine condensate credit (100°F)	\$0.20/1,000 1b
Condensate credit (250°F)	\$1.00/1,000 15
Boiler feedwater (250°F)	\$1.00/1.000 15

Figure 4 UNIT PRESSURE VESSEL COST VS VESSEL WEIGHT

Note: Maximum Compressor Capacity is 100,000 ACFM at Suction.

Figure 5 COST OF COMPRESSORS, INCLUDING DRIVER AND AUXILIARY EQUIPMENT; STEAM TURBINE EFFICIENCY