1970
STUDENT CONTEST PROBLEM

Each year the Student Chapters Committee of AIChE publishes a practical design problem to which
the seniors in AIChE Student Chapters are invited to provide solutions. The first prize, the
A. McLaren White Award, is $300, the A. E. Marshall Award carries with it $200, the third prize is
$100, and there are usually three papers receiving honorable mention.

winners of the first, second, and third prizes in 1970 were Fred D. Grosse, Drexel University:
Bruce A. Whipple, University of Colorado; and Larry W. Stinnett, Oklahoma State University. Steven
R. Auvil, Michigan State University; Loren B. Schreiber, University of Illinois; and Danley B. Wolfe,
Ohio Sitate University, received honorable mention. The awards will be made during the President’s
Luncheon at the Annual Meeting in Chicago on November 30, at which the recipients will be guests.

A committee from Diamond Shamrock Corporstion, Cleveland, Ohio, prepared the problem and
judged the solutions. Members of the committee were W. A. Gallup, chairman, and E. M. Norin,
1.T.Novak,and C. G. Vinson, Jr1.

Judges’ Comments

This year's Student Contest Problem was selected a5 2 typical industrial process design problem to
offer challenge and yet to be simple enough to be completed within the sliotted time. A good
solution required 3 working knowledge of chemical engineering principles, an exercise of judgment,
and a degree of creativity. Detailed information was provided for plant investment and manufacturing
cost estimates to simplify this portion of the problem. The intent was to enable the student to spend
most of his effort on technical design considerations but still to be aware of the importance of costs
and returns for optimization.

The commitiee was encouraged to find evidence that many contestants dug into the literature to
review cited references and related articles. It was also evident that many hours of effort went into
the solutions. Unf ortunately, many efTors were also uncovered that likely would have been caught in
a team effort such as that practiced in chemical engineering design courses as well as in industry.

The better reports included (1) an opening summary of the salient features of the design and the
conclusions drawn, (2) an enumeration of the assumptions made, (3) details of the approaches taken
or rejected in the solution, (4) a presentation of the final design with qualitative and quantitative flow
sheets, (5)a detailed list of equipment specifications, (6) » tabulation of process economics, and
(7) sample calculations including graphs and computer calculations if used.

The design required an optimization of the reaction, purification, snd recycle sections of the
process. The forward reaction rate had to be calculated by 2 manipulation of expressions for the
equilibrium constant and the reverse yeaction rate derived from the data given. The forward rate
constant increased with increasing temperature, and the equilibrium constant decreased. Hence, to
minimize reactor volume 3 series of stirred tank reactors with descending temperatures or 8 plug-flow
reactor with a downward temperature gradient from feed to discharge end would be suggested. It was
disappointing that only one contestant tackled the difficult integration of » nonisothermal plug-flow
reactor. Most of the contestants bad their thinking locked in on a single isothermal stirred-tank
reactor.

Separation of normally gaseous reactants from the 65°C. meltpoint product was 8 formidable
problem, and several examples of good judgment were demonstrated in the varied solutions. These
were the estimation of the sojubility of butadiene sulfone below its melting point, the minimization
of the concentration of product in the recycie stream, and the awareness of the process implications
of the melting point and the decomposition rate of the product.

It was a rewarding experience to review this year's contest problem solutions; in fact, the judges
learned some things about chemica! engineering practice from them. The contestants are to be
commended on their demonstration of analytical ability, imagination, snd diligence. The profession
can be thankful for a number of well-qualified graduates.

1970 Student Contest Committee




Prcblem

B. Adams: Yes, I believe ] have all the information
you will need for the butadiene sulfone plant design.
The physical properties and thermodynamic data for
butadiene and butadiene sulfone are presented in
Table 1. The data on sulfur dioxide can be found in
Perry’s. Even though we know that the butadiene-sul-
fur dioxide ~butadiene sulfone system does not form
an ideal solution, variation from ideality is probably

TO THE CONTESTANT:

This year’s student contest problem simulates a
make-or-buy study by a chemical manufacturing com-
pany. You, as a chemical engineer, are assigned to
make this study. You are to design a plant and to de-
velop the associated economics so that a make-or-buy
decision may be made.

The information required for this study will be pre-
sented in a conference. Extensive data are included
with the problem to save you the task of finding it. If
you need other data, be sure to reference it. Remem-
ber that in case of conflicting data, you are to use the
data given in this problem.

To be eligible for the national competition, the
solution to the problem must be arrived at by indivi-
dual effort. In working the problem you should allow
yoursell 40 to 60 hours to complete it.

The results of your study should be in the form of a
design report. The judges will consider the problem
from both its nontechnical and technical aspects. The
nontechnical area includes the report appearance,
English, and organization. Your understanding of
engineering concepts, of technical methods, and of
the problem will comprise the technical area.

Good luck!

CONFERENCE NOTES:

Present: Don Leader (Manager, Process Engineer-
ing) Frank Fells (You, Process Engineer) Bob Adams
{Another Process Engineer).

D. Leader: Jim, our Research Department has de-
veloped a number o! products which are derivatives
of butadiene sulfone. As we will be operating our
butadiene sulfone derivatives plant at full capacity by
the end of 1971, we would like to know whether we
should buy or make our own butadiene sulfone.

From our market projections, we have determined
the butadiene sulfone demand to be 10 million pounds
a year. The project life is expected to be 10 years,
and we can get a long-term contract on butadiene
sulfone at 25¢/1b. (delivered) to fit our projected de-
mand.

Bob has done some preliminary work on the prob-
lem, but he is needed now for a plant start-up. I would
like you to shelve your other work temporarily and
devote your time to this evaluation.

F. Fells: How far did Bob get in his work?

B. Adams: I've narrowed the butadiene sulfone pro-
cess down to a continuous process. The batch process
would not be competitive enough.

F. Fells: Could you tell me about the derivatives
plant? ‘ '

B. Adams: The butadiene sulfone derivatives plant
is a continuous process and should have a 0% on-
stream factor (330 days/year operation). The deriva-
tives plant is designed to accept molten butadiene
sulfone with the following specifications:

Butadiene =05wt. %
Sulfur dioxide =0.3wt. %

F. Fells: Do we have enough information to design a

butadiene sulfone plant?

small.

In the absence of activity coefficient data, as-

sume the mixture to be ideal. Figures 1 and 2 con-
tain the equilibrium and rate data for the reaction:

CH,=CHE—CH=CH, + 8O, - ' :
i

B C( 5"

¥. Fells: What {5 the reaction mechanism?

B. Adams: The reaction mechanism is given by the
stoichiometric equation. There are, however, some
side reactions which can occur; for example,

mCH~CE—CB=CH, + mSO,—
¢CH,~CH=CH—CH, 50,—)m
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The polymeric butadiene sulfone is amorphous and
undesirable as it will build up on the walls of equip-

ment.

F. Fells: How can its formation be minimized?
B. Adams: For all practical purposes the side re-
actions do not occur if the following conditions are

met.

Air should be excluded from the process sys-

tem. The sulfur dioxide-to-butadiene mole ratio
should be kept at one or greater than one. Finally,

TABLE 1
Butadiene Sulfone Properties (5)

Heat Capacity, Cp (s)
Heat Capacity, Cp (1)

Density, Q1)
Viscosity, (1)
Melt point

Heat of fusion (2}, AH;

Heat of vaporization, AHy

Normal boiling point (2)
Butadiene Properties ()
Heat Capacity, Cp (1)
Heat Capacity, Cp

Heat Capacity, Cp (g)

1
(1)
®

Enthalpy of formation
{(7) AR (1) formation

Density
Viscosity

Viscosity

85 cal./mole ‘C. at 25°C.
51 cal./mole °C. at 25°C.
1.24 gm./cc. at 12°C.

0.4 centipoise at 80°C.
€5°C.

2.5 Kcal./mole at 25°C.
12.3 Kcal./mole at 132°C.
151°C.

.z )(’C)auoc
./(gm.) CC.) at 130°C.
/(sm)('cnuoc

0.43 gm./cc. at ISO'C.
0.15 centipoise at 40°C.
0.08 centipoise at 130°C.
81 micropoise at 40°C.
106 micropoise at 130°C.

21.2 Keal./mole at 35°C. (8)
B5
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Figure 1. Equilibrium Data (5).

TABLE 2

Raw Material Costs
1,3-Butadiene (lig.)
Sulfur dioxide (lig.)
Sulfur (crude)
t-Butyl catechol

Utilities

Steam (150 lb./sq. in.
gauge)

(15 1b./8q. in.

gauge)

Fuel gas

Electricity

Well water (70°F.)

River water (90°F.)

Overhead
Operating labor

Supervision
Repair supplies and labor

Operating supplies
Indirect payroll

General works ex-
pense, including
taxes and insurance

Depreciation

0.09 ¥1b. {(delivered)
0.035 $/1b. (delivered)
40 $/long ton (delivered)
2.0 $/1b. (delivered)

0.80 §/1,000 1b.

0.50 $/1,000 1b.
0.50 $ million B.t.u.
0.7 ¢/kw.<hr.

0.10 $/1,000 gal.
0.03 $/1,000 gal.

5 ¥hr.

15% operating labor

5% FCI (fixed capital
investment)

6 operating labor

25% operating labor +
25% supervision

8% FCI
10% FCI
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. Figure 2. Kinetic Data.

tert-butyl catechol should be used at a level of 200
parts per million of butadiene in all process streams.
F. Fells: What information do you have on costs?

B. Adams: Raw material, utility, and overhead costs
are given in Table 2. These cost estimations were
recommended by our economic specialist. The buta-
diene sulfone plant, {f built, will be located near
Houston, Texas, on a developed site alongside our
butadiene sulfone derivatives plant. Utilities will be
available from the derivatives plant.

In my earlier work I used a recent article on cost
estimating which uses the module technique (1). The
bare module cost includes the purchase cost of the
particular piece of equipment and all other costs
associated with installing the piece of equipment with
its necessary piping, instrumentation, insulation, etc.
The sum of the bare module cost of each piece o
major equipment represents the fixed capital invest-
ment for a battery limits plant. The cost-versus-
capacity curves for various equipment appear in Fig-
ures 3 through 9. :

F. Fells: By the way, John, you haven’t mentioned
anything about materials of construction. Are there
any special corrosion problems?

B. Adams: No, there are not any unusual corrosion
problems, and steel can be used throughout the pro- '
cess. .

-F. Fells: Well, thank you, John. I believe I have
all the information I'll need.

B. Adams: O.K,, and good luck to you.
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Answer to Brain Twister on page 45.
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