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ABSTRACT: In this research note we revisit the topic of microhydrodynamics of an ellipsoid in rigid body motion to arrive at
the final resolution of a 140-year-old “mystery” that was featured in the dedication paper on the same topic in the Doraiswami
Ramkrishna Festschrift. There, the initial focus was on the role of the theory of self-adjoint operators as the framework for
proving that the surface tractions on a sphere had to be a constant multiple of the same rigid body motions of the boundary
conditions. The ellipsoid was then considered as a simple example to illustrate the loss of this behavior for nonspherical particles.
That goal was accomplished because for an ellipsoid, n·x, the dot product of the surface normal n and the point x on the ellipsoid
surface, is the required nonconstant multiplier. The simplicity of this result is striking and has been noticed throughout its history
with a number of authors remarking on the lengthy algebraic manipulations required to prove this simple result. In keeping with
the theme of the Doraiswami Ramkrishna Festschrift, this note presents a short and simple proof that highlights the importance
of the choice of the inner product, that is, the definition of the metric. The introduction of n·x = w(x) as a so-called weight
function in the definition of the weighted inner product, as in ⟨f, g⟩w = ∫ f(s)g(s)w(s)ds over the appropriate metric space
transforms the double layer operator (DLO) into a self-adjoint operator. From this it follows that the eigenfunctions of the
adjoint with respect to the nonweighted inner product are w times the DLO eigenfunctions. Thus, the simplification noted in the
companion paper is true for all eigenvalues and eigenfunctions of the double layer operator and not just the eigenvalue of −1 and
its associated eigenfunction vRBM. These insights open the door to significant opportunities in the computational analysis of
ellipsoidal particles in nanoparticle technology including topics such as perturbation methods for inertial and non-Newtonian
effects, as we now have ready access to the spectral decomposition and biorthogonal expansions for the double layer operator.

■ INTRODUCTION

In this research note we revisit the topic of microhydrody-
namics of an ellipsoidal particle in rigid body motion to arrive
at the final resolution of a 140-year-old “mystery” (with key
plot developments in 1876, 1892, and 1964) that surfaced in
the dedication paper on the same topic in the Doraiswami
Ramkrishna Festschrift. In that companion paper,1 the initial
focus was on the role of the theory of self-adjoint operators as
the framework for proving that the surface tractions on a sphere
had to be a constant times the same rigid body motions of the
boundary conditions. The ellipsoid was then considered as a
simple example to illustrate the loss of this behavior for
nonspherical particles. That goal was accomplished because for
an ellipsoid, the surface tractions are n·x times a rigid body
motion where the dot product of the surface normal n and the
point x on the surface of the ellipsoid is the required
nonconstant function. The simplicity of this result is striking
and has been noticed throughout its history with a number of
authors remarking on the simple but lengthy algebraic
manipulations required to prove this result. (For example, the
author used five pages of neatly written notes to verify the
results for a translating ellipsoid).
In keeping with the theme of the Doraiswami Ramkrishna

Festschrift, this note presents a simple proof that highlights the
importance of the choice of the inner product. The
introduction of n·x = w(x) as a so-called weight function in
the definition of the weighted inner product, as in ⟨f, g⟩w =
∫ f(s)g(s)w(s)ds over the appropriate metric space, leads to the

conclusion that for an ellipsoid, the double layer operator is
self-adjoint with respect to this weighted inner product; that is,

= *w. Thus, if v is an eigenfunction of then it is also an
eigenfunction of *w, which in turn implies that wv is the
associated eigenfunction of * (the adjoint with respect to the
standard, nonweighted inner product). This result is true for all
eigenvalues and eigenfunctions of the double layer operator
including the all-important eigenvalue of −1 and its six
associated eigenfunctions vRBM corresponding to the six
“basis” rigid body motions. These insights open the door to
significant opportunities in the computational analysis of
ellipsoidal particles in nanoparticle technology including topics
such as perturbation solutions for inertial and non-Newtonian
effects as we now have ready access to the spectral
decomposition and biorthogonal expansion for the double
layer operator.

■ RESULTS AND DISCUSSION

Integral Operators and Weighted Inner Products. The
required background information on microhydrodynamics is
described in the companion paper1 and is not repeated here. As
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in the companion paper, we follow the notation of Kim and
Karrila2 for the double layer operator with a kernel given by
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and considering first the standard (unweighted) inner product
we have the kernel for its adjoint as Kij*(x, ξ) = Kji(ξ, x) . The
book by Professor Ramkrishna3 provides an instructive
reminder that this expression for the kernel of the adjoint
follows from the definition and requirement that ⟨ (v), t⟩ =
⟨v, *(t)⟩ which when expressed in expanded form as the
actual integrals,
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align the kernels for ease of identification (after renaming the
dummy variables and indices and interchanging the order of
integrations on the surface of the particle).
We now consider the same procedure but with the weighted

inner product,

∫ ξ ξ ξ ξ⟨ ⟩ =v t v t w S, ( ) ( ) ( ) d ( )w
S (2)

where the key requirement for the weight function is that it
must be positive everywhere on the surface; that is, w(ξ) > 0 on
S. Now we have for the same alignment procedure,
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and the result
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which highlights the role of the inner product in the definition
of the adjoint.
The Ellipsoid and Its Surface Normal. We now consider

an ellipsoid whose surface is defined by the equation
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with different values for the semiaxes a = a1 > b = a2 > c = a3.
The repeated index i imply summation from 1 to 3 by the usual
Einstein summation convention.
The surface normal n(x) at the point x or coordinates (x1, x2,

x3) = (x, y, z) satisfies a useful relation which in index notation
is given by

= ·n x n x
x
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so that the dot product that appears in the definition of the
kernel in eq 1 may be manipulated as follows
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where the last step is valid for all w(x) that are a constant times
n(x)·x. For such weighting, the double layer operator is self-
adjoint with respect to the weighted inner product. The choice
w(x) = a−1 (n·x) is convenient because, for the degenerate case
of the sphere, w = 1, and the “weighting” becomes latent.
We now consider the implications for the eigenspaces of

and its two adjoints for the ellipsoid. If v is an eigenfunction of
, the corresponding eigenvalue−eigenfunction relationship

for the two adjoint operators becomes (keeping in mind that
is self-adjoint with respect to the weighted inner product)
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or equivalently,
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S
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which is the standard result from linear operator theory that the
(unweighted) adjoint has the eigenfunction wv if the operator is
self-adjoint with respect to the weighted inner product.
We have achieved a satisfactory closure to a question raised

during the long history of ellipsoidal microhydrodynamics that
has been marked by the contributions of Oberbeck4 (1874,
translating ellipsoid), Edwardes5 (1892, rotating ellipsoid), and
Brenner6 (1964, expressions for the surface tractions). In
particular, as described in the companion paper, Brenner’s
(1964) tour de force can be used to deduce that the surface
tractions for translation and rotation are n·x times the six
canonical rigid body motions,
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and we now recognize these surprisingly simple results as a
requirement of the general theory applied to the special case for
the λ = −1 eigenspace of .

■ CONCLUSIONS
As mentioned in the companion paper, the wonderful
connection between linear operators and transport phenomena
highlights once again the power of mathematics in unifying the
pedagogical framework for chemical engineers and the great
influence of Professor Ramkrishna over the past half-century. It
is especially appropriate that as we honor Professor
Ramkrishna, his and the author’s shared fondness for the
weighted inner product adds a most helpful dimension to the
solution of a 140-year old mystery. The author had conjectured
a solution strategy based on weighted inner products almost 30
years ago during the writing of Kim and Karrila’s Micro-
hydrodynamics; nevertheless the formal proof as described in
this note was spurred only recently by the author’s current
research focus on the construction of abstract metric spaces as
an element of rational computer-aided drug design.
The relatively simple results for the surface traction on an

ellipsoid for the RBM boundary value problem with the force
or torque as the known inputs may now be generalized as
follows. The double layer operator is not self-adjoint for the
ellipsoid when the standard inner product is employed, but the
introduction of (n·x)/a = w(x) as the weight function produces a
self-adjoint operator with respect to the weighted inner product.
Consequently, the eigenfunctions of * are n·x times the
corresponding eigenfunctions of for all eigenvalues λ. For the
sphere, w = 1, because we have scaled the dot product by the
dimensional factor of a, the standard inner product is employed
always. Furthermore, we note that the double layer operator for
the ellipsoid has a biorthogonal expansion of the form:

∑ ∑λ ψ ψ λ ψ ψ• = ⟨ •⟩ = ⟨ •⟩
λ λ

w( ) , ,i i i w i i i
i i (11)

once we construct the appropriate orthonormal basis set {ψi}
for the eigenspaces of from the general solution of the
ellipsoid as given in Kim and Karrila.2

For the microhydrodynamic community, this note provides a
simple description of the eigenspace of the adjoint of the
double layer operator, namely that they are simply n·x times the
corresponding eigenfunctions of . These insights open the
door to new opportunities in the computational analysis of
ellipsoids in nanoparticle technology including topics such as
perturbation solutions for inertial and non-Newtonian effects
via access to the spectral decomposition and biorthogonal
expansions for the double layer operator.
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