Piping & Instrument Diagrams

Barry M Barkel PE

Communication for Engineers

Verbal

Assignments, Instructions, updates

• Written

Reports, Procedures, Specifications

Mathematical

Calculations, data, Performance statistics

Symbolic

Designs, Process Documentation

Drawings are Engineering's

INTERNATIONAL LANGUAGE

engineers all over the world can understand them

TYPES of DRAWINGS

- Process Flow Diagrams: What a Process Does
- Piping & Instrument Diagrams: How it works
- Layout Drawings: How it looks
- Mechanical Drawings: How to build it
 Construction Drawings:

3

ł

Uses of P&IDs

- Develop Operational methodology
- Develop Safety Philosophy and Design
- Develop Control Philosophy
- Basis for Control Programming
- Communication Document for Project

Uses of P&IDs

- Serves as Design Basis for:
 Equipment Design
 Piping Design
 Estimating
 Purchasing
- Used to evaluate construction progress
- Training basis for Operational Personnel

Characteristics of P&IDs

- Grouped by specific sections of the process
- Schematic; NOT a scaled layout
- Clear; uncluttered
- Systematic; uniform
- Usually confidential
- Revised often with Revisons clearly identified

Elements of a P&ID

• Equipment & valves identified

• Instrumentation type & location identified

• Path between instruments & control devices indicated

• Piping size and type identified for all lines

Identification of Equipment

Identification by type

w/ specific code designation..ie TKw/ a specific standardized shape

Identification by number

w/ specific item number...ie TK 101

Identification by name

w/ what the unit is called.. ie methanol tank

TECHNICAL STANDARD: Process Flow Diagrams sheet

5.5 Equipment Identification

- 5.5.1 Equipment shall be identified with an classification code letter and a das followed by a number The equipment code and number shall be shown adjacent to the equipment it designates on the PFD.
- 5.5.2 Equipment Classification

5.5..3. Equipment Numbers

Each identifiable item of equipment shall be assigned a 2 or 3 digit number. Items numbers may be grouped by division of the process i.e. Reaction ----100 to 199 Distillation- 200 to 299 Storage ------300 to 399

5.6. Equipment Symbols

See Attached Figures

sheet 3 of 10

Valve Identification

Identification by type

Date	PIPING & INSTRUM	ENT DIAGRAM	
\bowtie		Ŕ	D81
GATE VALVE	GLOBE VALVE	PLUG VALVE	BALL VALVE
 ب	₩	Á	
DIAPHRAGM VALVE	NEEDLE VALVE	OUICK OPENING VALVE	CHAIN OPERATED VALVE
2	Ā	Þ	#
Y-VAL VE	ANGLE VALVE	FLUSH BOTTOM TANK VALVE	BUTTERFLY VALV
- A	R	1881	N N
BEVEL GEAR OPERATED VALVE	3-WAY VALVE	BLEEDPORT BALL VALVE	BLEEDPORT PLUG VALVE
 ⊅≸Ω	密	Z	k
VEE BALL VALVE	4-WAY VALVE	CHECK VALVE	RELIEF VALVE
	<i>ס</i>	Z	X
RUPTURE DISC	DAMPER VALVE	NON-RETURN VALVE	PINCH VALVE
	Piv Xiq	Б Д	X
SAMPLE CONNECTION	POST INDICATOR VALVE	EXCESS FLOW VALVE	FOOT VALVE
cso X	csc	\boxtimes	
CAR SEAL OPEN	CAR SEAL CLOSED	JACKETED VALVE	
VALVE SYMBOLS			

Instruments

- Instruments may be: Indicators or Part of a control system
- Instruments often have several components:

sensing elements transmitters control elements

Some Instrument Designations

- P = pressure
- T= Temperature
- F = Flow
- L = Level

- I = indicator
- C = controller
- S = switch
- E = element
- T = transmitter
- G = gage
- ISA designations usually used

Instrument Configuration

Control Paths

• Hardwired

• "Computer program"

Piping Designations

- Line Codes
- Spec breaks

Line Codes

- Size
- Service
- Mat'l of Constr or Piping Spec
- Insulation amount and Spec

Pipe size

"Nominal diameter" 1", 2 1/2", 4" etc.

Pipe Service

Coded to a designation shown on P&IDs

Examples: Methanol- Me Reactor Product Stream- RxP

Material of Construction

• Generic

Examples- PVC 316L S/S

 Company or Project Specification Examples- *PP1*
 (a specification covering the materials and joining methods for PVC plastic pipe)

Insulation Code

- Thickness of insulation (inches)
- Type or Insulation Specification

Example- F (fiberglass)

- IN 9 (Project Specification for Calcium Silicate System)
- Tracing Code

Examples- S (steam)

E (electric)

Total Line Code

Example-

2" dia., Type 304 s/s pipe in acetic acid reactor discharge service, insulated with 1" of fiberglass insulation

2"AARX-304S/S-1"F

Spec Breaks

- A Line /Code changes every time ANY ELEMENT in the code changes
- IE 3"AARX-304L S/S-1"F --> 3"AARX-304L S/S at the point where the fluid has cooled enough to eliminate the insulation.

Spec Breaks are shown as ------1-----1------1------

3"AARX-304L S/S-1"F 3"AARX-304L S/S

Notes on P&IDs

- Normally read LEFT to RIGHT TOP to BOTTOM
- The Stream No.s, Ts, Ps and Flows from the PFD do NOT appear on a P& ID
- Equipment numbers are the same as on the corresponding PFD

THANK YOU

