

Energy Materials Advancing Energy Storage

Lithium Ion Battery Failure Mechanisms

Dee Strand Dow Research Fellow

How do LIBs Work?

A passivation layer is required on the anode

- Carbonate electrolytes are not stable at the anode potentials (close to 0 V vs. Li)
- Formed during first cycle or two in situ

Reprinted with permission from *Chem. Rev.*, **2004**, *104* (10), pp 4303–4418. Copyright 2004 American Chemical Society.

Dow

On market today with NiMH and Lithium Ion Batteries (LIBs)

- Extra power in acceleration
- Maintains power during stops
- Recharged during braking

Plug-In Hybrid Electric Vehicles

New to the Market

- Defined "all electric" range (40 miles for Chevy Volt)
- "Plugs in" to fully recharge battery
- Electric drive, with gas generator as back-up once batteries are depleted

DOV

Electric Vehicles

New to the Market

- Powered solely by batteries
- Range defined by battery capacity for particular vehicle (e.g., 200 miles)
- Currently limited by short range
- Technology currently appropriate for "niche" type vehicles/fleets

What Performance is Required?

Dow

Energy Definitions

Dow

- Current (1 ampere = 1 coulomb/sec)
 - Ampere is the amount of electric charge passing a point per unit time
- Capacity (amp-hours, Ah)
 - Current x time = electric charge
 - Unit of charge
 - 1 amp hour = 3,600 coulombs
- Specific capacity (Ah/g or mAh/g)
 - Amount of charge per unit mass
- Energy (Wh or kWh)
 - Can calculate from Ah (amp hours) remember this is charge
 - Ah = Wh/voltage **OR** Wh = Ah x "average voltage"
 - Approximate because the voltage is not constant during discharge of a battery

How much charge can I get out of 1 g of cathode material? How much charge can I store in 1 g of anode material? What is the discharge voltage of the battery? How much cathode and anode material can I fit into the battery?

Power Definitions

Dow

- Watt unit of power
 - Power = energy/time
 - 1 watt = 1 Joule/sec
 - 1 watt = 1 V x 1 ampere (one amp of current flows through a potential difference of one volt)

How fast can I move the charge? Can I move the charge at all?

How do LIBs Fail?

- Some general statements
 - There are many failure modes/mechanisms
 - All can occur simultaneously
 - Relative contributions of different failure mechanisms are material dependent and material combination dependent
 - "Reflective" effects often occur
 - Solutions that inhibit one mechanism frequently enhance others
 - Failure can often depend more on how the cell is made than what the material is capable of
 - Some aspects are not well understood in the industry

What Does Failure Look Like?

Dow

Categories of Failure

- Loss of lithium
- Loss of active material (host)
- Inability to move lithium
- Catastrophic-type failures

Loss of Lithium

- Anode SEI formation
 - "Necessary" process during the first few cycles
 - Degradation mechanism after that
 - Mechanical instability
 - Thermal instability
 - Catalytic-type decomposition
 - Graphite properties
 - Metals from the cathode
 - Probably more....

Loss of Lithium

- Cathode SEI formation
 - Much less known about this
 - Very dependent upon cathode voltage and choice of electrolyte

XPS C1S spectra of NMC Cathode

Fresh

Loss of Lithium

Loss of Active Material

- Electrode adhesion failures
- Particles become "disconnected"
- Particles fracture due to stresses on cycling

Typical Electrode Composition

- 90-94% active material
- 3-5% conductive additive
- 3-5% polymeric binder

Loss of Active Material

- Cathode phase changes
- Irreversible electrochemistry

Reprinted with permission from *Chem. Mater.*, **2010**, *22* (3), pp 1209–1219. Copyright 2010 American Chemical Society.

Si + Li goes through a number of phases during lithiation • Some are not reversible

• Cannot do electrochemistry on that fraction of the material

Obrovac, US 2006/0046144A1

Loss of Active Material

Dow

Inability to Move Charge

- Cathode structural changes
 - Change lattice parameters
 - Change conductivity
- Blocking of lithium pathways in the cathode
 - Movement of transition metals into Li⁺ channels

Reprinted with permission from *Chem. Mater.*, **2010**, *22* (21), pp 5845-5855. Copyright 2010 American Chemical Society.

Inability to Move Charge

- Barriers to movement of lithium into/out of electrodes
 - Thick SEI layers
 - Poorly conductive SEI layers
- Loss of electrolyte to form gases
 - Cell gets "dry" areas
- HF effects

Inability to Move Charge

- Shorting
- Separator failure
- Electrolyte shortage
- Abuse situations

Catastrophic Failures

Catastrophic Failures

Vaughey, 2009 DOE Merit Review

Nonuniform **Hot Spots** SOC

Local

Pesaran, 2009 DOE Merit Review

Separator Puncture

Lithium

Dendrites

Catastrophic Failures

How to Improve Durability?

Improved Materials

- •Nonflammable electrolyte
- Nonreactive electrolyte
- •Structurally stable cathode materials
- •Modified active material surfaces
- •Thermally stable SEI layers
- •Thermally stable separators

Improved Cell Design

- Proper anode/cathode balancing
- Better thermal management
- Robust packaging
- Lower impedance

Manufacturing Quality

- •Defect-free separators
- •Elimination of metal particulates
- •Electrolyte purity
- •Electrode alignment

- There are many failure modes/mechanisms in LIBs
- All can occur simultaneously
- It is difficult to address one mechanism without affecting another
- Improvements in materials, cell design, and manufacturing are necessary

THANK YOU!

Material Choices

	Chemistry	Specific Capacity (mAh/g)
LNMO	LiNi _{0.5} Mn _{1.5} O ₄	140
LL	<i>x</i> Li ₂ MnO ₃ -(1- <i>x</i>)LiMO ₂	>200
LiMO ₂	LiCoO ₂ , Ni, Mn, Al substituted	150
LMO	LiMn ₂ O ₄	140
LiMPO ₄	Fe, Mn, Co	160
LTO	Li ₄ Ti ₅ O ₁₂	140
Li-graphite	LiC ₆	370
Si	Li _x Si	>2000

Material density also matters!!!

Today's LIB Materials

All mechanisms can occur depending on many factors (other components, how the cell is built and operated, etc.). I am listing only the most prevalent concerns.

	Loss of Lithium	Loss of Active Material	Inability to Move Charge	Catastrophic Failure
LiCoO ₂	х	х		X
LiNi _x Mn _y Co _{1-x-y} O ₂	x	x		x
LiNi _x Co _y Al _{1-x-y} O ₂	х	х		x
LiMn ₂ O ₄	Х	х	х	
LiFePO ₄				
Graphite	Х		x	х
LTO				

Tomorrow's Materials

	Loss of Lithium	Loss of Active Material	Inability to Move Charge	Catastrophic Failure
LiNi _{0.5} Mn _{1.5} O ₄	X	x	X	
<i>x</i> Li ₂ MnO ₃ -(1-x)LiMO ₂	x	X	X	x
LiMPO ₄ (M = Mn, Co)	Х	×	X	
Silicon-Based	Х	x	х	

