Come Present Your Findings to DIERS!!

The Call for Abstracts for the 2022 DIERS Fall Meeting is now open. Abstracts are required for all presenters. Please submit abstracts as soon as possible, but no later than September 2, 2022.

DIERS welcomes presentations on any subject pertaining to runaway reactions, equipment overpressure, and pressure relief. Presentations on topics, including vessel and vent flow dynamics, reactivity measurement and modeling, case studies, advances in modeling, and new project ideas are welcome (see the accompanying list for more elaboration). Tutorials are also accepted. The agenda should be prepared and posted by September 9, 2022, so please respond right away.

To arrange a presentation, contact:
 Harold Fisher: (304) 776-6371; fisherhg@suddenlink.net
 Ben Doup: (312) 415-5450; doup@fauske.com

Please adhere to the following guidelines for abstract submission.

- Name and title of the proposed presentation
- Length of time required for presentation (allow 5-10 minutes for questions)
- Dates and times available for presentation
- Best contact information: email, phone
- Abstracts should be one paragraph long, max. 200 words

Abstracts will be reviewed by the DIERS Program Committee and presenters will be sent formal abstract acceptance notes. The contact information for members of the DIERS Program Committee are:
 - Brittany Armstrong: brittany.armstrong@merck.com
 - Freeman Self: feself@bechtel.com
 - Min Sheng: s25011@hotmail.com

Professional Development Credits for attendance at DIERS meetings are available upon request.
Proposed Topics for the Fall 2022 DIERS Meeting

Review and Application of Existing DIERS Technology
- Case studies illustrating the implementation of DIERS ERS technology
- Case studies of safeguarding of runaway reactions
- Review of previous DIERS discussions/presentations on a specific topic

Incident Investigations
- CSB and other's investigation results
- Learnings from meeting attendees (i.e., their companies)

Modelling and Simulation
- Pressure relief valve stability methods
- Modeling of pool and jet fires
- Relief design for systems with solids
- Dispersion analysis

Experimental Method
- Experimental design and interpretation of calorimeter data
- Calorimeter development for reactivity evaluation
- Experimental studies on specific systems
- ASTM developments

ERS Hardware
- Relief device characteristics, performance, operational behavior, problems, etc.

Codes, Standards, Regulations, and RAGAGEP
- API, ASME, EPA, ISO, NFPA, and OSHA developments
- Transport of hazardous material
- Safe discharge locations

Safety in Energy Storage Systems
- Batteries – calorimetry testing and modeling
- Hydrogen storage and transport
- Hydrogen fuel cells