

Fabrication & Operat construction and operat hazard columns are che	ion Additional H ion. List the majo ecked in an individ	azard Detail Cl r source(s) of th ual row, then the	heck List: e hazard an e hazards sh
Hazard	Present During		(
	Construction?	Operation ?	
Pressure			
Toxicity			
Flammability			
Reactivity / Instability			
Hot Surfaces/High			

JSA – Page 6: Chem. Quantities

Chemical Information Page

List the chemical name, state, concentration, and total quantity of chemical required for the competition.

Chemical Quantities: List below the chemical names, concentrati

Chemical Name	Chemical State Solid, Liquid, Gas	Concent Be sur

Chemica	al Inform	ation Pa	ge			
Chemical Toxicology	, Regulation	and Disposa	l: List the sa			
	Toxicology					
Chemical Name	TWA	PEL	Other			

JSA – Page 7: Chem. Rx.

Chemical Reactions: Provide details on any chemical reaction(s) that occur on your car. Please show the species involved, the stoichiometry and the heat of reaction, if available. Also list side reactions and any other reactions that may impact safety.

JSA – Page 7: Biohazards

Biohazards: Provide additional detail on the biohazards involved. List the name of the organism used, the biohazard level for this organism, and a description of how these organisms will be handled safely.

Sequence of Steps Emergency Shutdown

Start-up Procedure

Run Time Procedure

Shutdown Procedure

Cleanup / Waste Disposal

JSA – Page 8: Safe Operations

Emergency Shutdown:

List a few things you can do prior to evacuating the laboratory.

Start-Up Procedure:

List the steps to get ready to operate your vehicle.

Run Time Procedure:

Steps required to operate the vehicle.

JSA – Page 8: Safe Operations

Shut-down Procedure:

Steps required to normally stop the vehicle and return it to a safe state.

Clean-up / Waste Disposal:

Steps required to clean the equipment and dispose of all chemical wastes.

Potential Hazards	Procedure to Control	PPE
Potential Hazards	Procedure to Control Hazard	PPE or Equipment Required
_	_	

Engineering Documentation Package (EDP)

- 1. Job Safety Analysis (JSA)
- 2. Flow diagram of car
- 3. Design basis for maximum operating pressure
- 4. Design basis for estimating relieving mass flow rate
- 5. Equipment specifications summary table and
- equipment specification data 6. Pressure certification of vessel
- 7. Standard operating procedures
- 8. Test Data
- 9. Car experimentation area floor plan
- 10. Management system for vehicle modifications
- 11. Management system for chemical use and disposal
- 12. Pictures of vehicle, as it would appear on starting line
- 13. Material Safety Data Sheets (MSDS)

Engineering Documentation Package (EDP)

An example engineering documentation package is available on the AICHE ChemE car web site.

Please consult for details.

AICHE ChemE Car Safety Lecture: Part 2 D. A. Crowl

	A	8	C	D	. E.		G		1.		κ.	1	M	- N	0	
1	Calculation	of Chemil	Car Vehicle	e Prossures		_										
2	Note: This I	calculation	assumess	stoichiometric	reaction.											
3	alfrent															
4	Volume of v	rehicle ve	ssels:	3.08	iners											
à.																
ŀ	Properties of	of chemics	PC:			1.00		-	-							
ţ	shacilic fa	and of adv	to Brecht v	KREIK ACHE		1.05										
÷	Adalasi dara			and lines, dealers												
č,	Morecular v	e aridi	-	Enversione 40.05												
	Lodium hire	ethonatai		84.01												
	Sodium Are	fals:		136.08												
	Carbon dina	ider		44												
14	Water:			18												
15																
16	Note: Need	to subtra	ct water pr	roduct volume	from cham	ber volume in	doing press	ure calcula	tion.							
ij																
ü	***** Glacia	Acetic A	cid ******	Sodium Bicart	bonate	** Water Pepp	duced ***	Carbon Die	skide	Gas Volum	ne i	···· Press	ure *****	Gas Volum	e at 1 atm.	60
19	(m)	gm .	gm-males	gm-moles	gn	gm-moles, m	4	gm-moles		Liters		atm	psi	ft**3		
20	38.000	10.500	0.175	0.175	14.690	0.175	3.147	0.175		3.077		1.390	20.428	0.145299		
Ű,	10.000	10.500	0.175	0.175	14.690	0.175	3.147	0.175		3.077		1.390	20.428	0.146269		
22	20.000	21.000	0.350	0.150	29.379	0.350	6.295	0.350		3.074		2.782	40.899	0.292538		
23	30.000	31.500	0.525	0.525	44.069	0.525	9.442	0.525		3.071		4.178	61.411	0.438807		
24	40.000	42.000	0.699	0.699	58.758	0.699	12.590	0.699		1.067		5.576	81.965	0.585076		
25	50.000	52.500	0.834	0.874	73.448	0.874	15.737	0.874		3.064		6.977	102.562	0.731345		

Equipment Specifications Summary Table / Data

Provide a summary table listing each major piece of equipment. Include valves, tubing, pipes, vessels, regulators, turbines, etc. List important specs, such as temperature and pressure, material of construction, etc.

Provide copies of the vendor's equipment specification sheets for all equipment.

Equipment Specifications Summary Table

Equipment Item	Vender / Model	Material of Construction	Critical Design Specifications
Vessel Sheet Metal	MacSteel	Stainless SX304	Max. Temperature: 925°F Tensile strength: 600 MPa
Relief Device – Spring operated	Swagelok R3A	Stainless	Set poessure: 300 psig 12 SCFM discharge rate at set pressure
Regulator	Grainger R354-S	Stainless	Temperature range: 0°C to 65°C Supply pressure max: 21 bar Set to 20 pri outlet pressure
Stainless steel ball valve – 1-inth	Golden Highope Mødel CHA-2F	Stainless	2000 pti at 450 F
Stainless steel pipe - 2-inch	Generic	Stainless	Pressure rating: 1902 psig at 100°F
Gast air motor	Gast model NL22	Various	Max. pressure: 80 pti This will operate at 20 psi with an spm of 1000 and 5 SCFM gas flow
Manufactured pressure vessel	Manufactured	Stainless SC304	Tested to 560 psig with no measurable deformation of vessel. See pressure certification.

AICHE ChemE Car Safety Lecture: Part 2 D. A. Crowl

Standard Operating Procedures (SOPs)

These can be developed directly from the Safe Operating Procedures Page of the JSA. Include only the steps, not the hazards and controls.

Start-up Procedure

- Donne PPF, including safety glasses and glowes: Place beaker on spill ray. Weigh out the designated mass of sodium bicarbonate in a beaker using the scale. Place graduated cylinder on spill ray. Measure designated volume of glassial acetic acid using a graduated cylinder. Leave in graduated cylinder. Measure out in graduated cylinder required water based on sodium bicarbonate solubility. Add 20% extra to insure all dissolved. Open ["aluet in measure vesal. 6.

- extra to insure all dissolved. 7. Open 1" plug in pressure vessel. 8. Carefully pour sodium bicarbonate powder thru hole. 9. Close 1" hole in PVI with 1" plug. Tighten fully. 10. Close valve V3 to insure that liquid does not enter regulator.

Car Experimentation Area Floor Plan

Management System for Vehicle Modifications

This section applies to changes done after your engineering documentation package as been reviewed. The purpose of this is to inform the inspectors of the changes that have been made since the EDP was reviewed and to insure that any new hazards have been identified and addressed.

See the example EDP.

Management System for Chemical Use and **Disposal**

This applies to chemical storage, use and disposal at your home institution and also the competition.

See example Engineering **Documentation** Package.

Pictures of Vehicle

The picture must show exactly how the vehicle will look at the starting line of the competition.

Material Safety Data Sheets

Provide vendor supplied MSD sheets for all reactants, products and intermediate chemicals. Include any solvents or other utility chemicals that are used.

MATERIAL SAFETY DATA SHEET

PRODUCT NAME: CARBON DIOXIDE, GAS

 1. Chemical Product and Company Identification

 BOC Gase,
 BOC Gas

 Division of
 Division

 The BOC Croep, Iac.
 BOC Cas

 575 Montain Avenue
 S975 Fall

 Mirray Hill, NJ 0974
 Minisian

BOC Gases Division of BOC Canada Limited 5975 Falbourne Street, Unit 2 Mississauga, Ontario LSR 3W6

Summary of Workshop

You need to identify the hazards on your ChemE car, control or eliminate these hazards, and then convince the EDP reviewers and the inspectors that this has been done successfully.

You also need to follow the management procedures outlined in the rules: JSA preparation, EDP submission, and car inspection.

ChemE Car Qualification Test

Now that you have viewed the Chem-E-Car Safety Training presentation, please access <u>www.aiche.org/chemecartest</u> to take the required qualification test.

Simply watching the video WILL NOT qualify you to compete. As of January 2010, each team member of a NEW Chem-E-Car team or a team that was not qualified to compete at past competitions MUST pass the test to compete at a Chem-E-Car competition.

ChemE Car Qualification Test

Once you pass the test with an 80% or higher score, your name will be added to the list of qualifiers maintained at AIChE headquarters.

If you fail the test, you will be given another opportunity to pass.

Please write down this website, as it is not on the public AIChE student website -<u>www.aiche.org/chemecartest</u>. This is where you will go to access the test and receive more details.

