

Digitalization of Risk Assessment and Evaluation of Incident Reports for Companies Operating in Alberta

Presented By:

Daniel Kurian, Dr. Fereshteh Sattari, Dr. Lianne Lefsrud

Why Digitalization of Incident Reports is Important?

Incidents still occur and are costly:

- ➤ In 2016, costs & claim payments cost Canadians ~\$8.7 billion¹
- ➤ Production loss, absenteeism, medical costs, and compensation equate to 4% of the annual global gross domestic products²

Gaps in current methods of incident reporting:

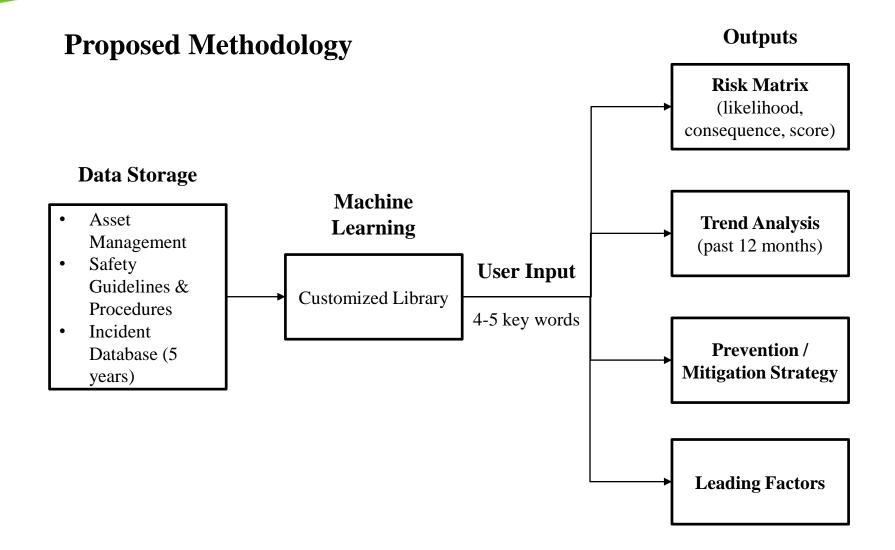
- > Typos and misinformation
- Inadequate follow-ups for incidents
- Time consuming³
- ➤ Bias (different interpretations)⁴

^{1. 2016} Statistics from Canadian Centre for Occupational Health and Safety, https://www.ccohs.ca/events/mourning/.

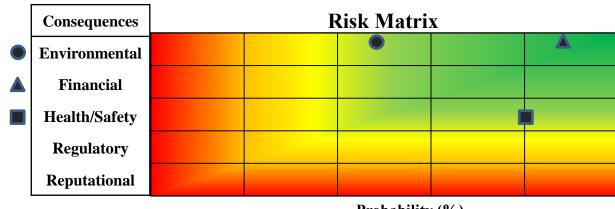
^{2.} Takala, J., Hamalainen, P., Saarela, K.L., Yun, L.Y., Manickam, K., Jin, T.W., Heng, P., Tjong, C., Kheng, L.G., Lim, S., and Lin, G.S. (2014). Global estimates of the burden of injury and illness at work in 2012. *Journal of Occupational and Environmental Hygiene*, 11: 326e337.

^{3.} Nijs Jan Duijm, "Recommendations on the use and design of risk matrices," Safety Science, 76, pp. 21–31, 2015.

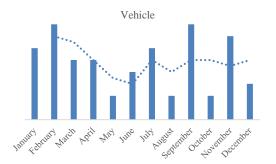
^{4.} Philip Thomas, J. Eric Bickel, and Reidar B. Bratvold, "The Risk of Using Risk Matrices," SPE Annual Technical Conference and Exhibition, 2013.

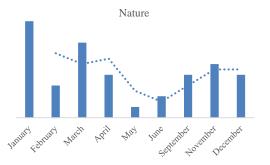


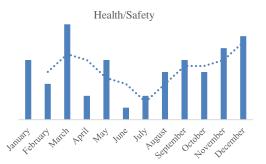
Results: Risk Matrix and Trend Analysis



Probability (%)







Results: Prevention / Mitigation Strategies & Leading Factors

• Prevention / Mitigation Strategies

- ➤ Was the road salted / graveled?
- Drive at a speed appropriate to road and weather conditions.
- ➤ Provide employees with an option to take defensive driving (or training to drive in winter).

Leading Factors

- > Icy road conditions
- ➤ Inadequate risk recognition
- > Factors to affect situational awareness

Current Research: Machine Learning Algorithm

```
###PRIMARY CLASSIFICATION
X1_train, X1_test, y1_train, y1_test = train_test_split(X, y1, test_size=0.33, random_state=7)
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC

text_clf1 = Pipeline([('tfidf', TfidfVectorizer()),('clf', LinearSVC()),])

text_clf1.fit(X1_train, y1_train)
predictions1 = text_clf1.predict(X1_test)

from sklearn import metrics

print(metrics.confusion_matrix(y1_test,predictions1))
print(metrics.classification_report(y1_test,predictions1))
print("LinearSVC Accuracy: ", metrics.accuracy_score(y1_test,predictions1))
```

- TfidfVectorizer
 - Tokenizing, text pre-processing, removing stop words
- Train a classifier
 - ➤ Naïve Bayes, Linear SVC (SVM), Neural Networks

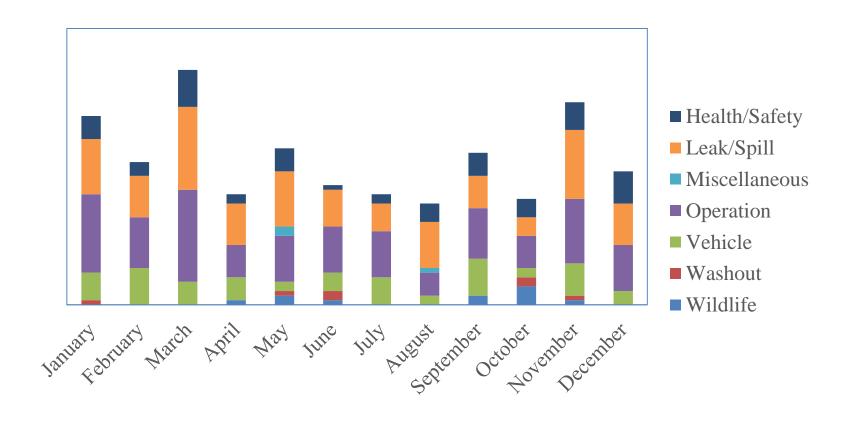
Current Results (Accuracy for different classifiers)

Classification Method	Accuracy
Support Vector Classification (SVC)	43.41%
Linear SVC	70.34%
MLP Classifier (Neural Network)	67.03%
Nearest Neighbors	60.44%
Decision Tree	59.07%
Random Forest	59.34%
Adaboost	54.12%
Multinomial Naïve Bayes	53.85%
Logistic Regression	60.16%

Current Results (Linear SVC Classification)

		Predicted							
		Comm.	Health/S	Leak/Spill	Misc.	Operation	Uncat.	Vehicle	
Actual	Comm.	5	1	0	0	3	0	0	
	Health/S	0	46	1	0	11	0	7	
	Leak/Spill	0	3	19	0	8	0	0	
	Misc.	1	1	0	6	3	0	3	
	Oper.	2	6	3	1	132	2	12	
	Uncat.	0	3	0	0	17	1	2	
	Vehicle	0	6	2	0	10	0	47	

Current Results (Frequency of Incidents)



Conclusion

- Use incident database to create a customized keyword library
- Classify incidents using key words
- Assign risk score, evaluate trends, suggest tailored improvements

Next Steps:

- What are the biggest issues with your current systems of incident reporting?
- What would you need/want in an automated incident classification and reporting system?

Thank you