Point Source Capture vs. "Air Capture":

CO₂ Source Properties: Air/Flue

Property	Air	Flue
Amount of CO ₂	3 teratonnes	20 gigatonnes/yr
Distribution	400 ppm - "infinite" mostly uniform source	5-15% point sources
Temperature	0-30 °C Low ∆T	45-65 °C High Δ T – heat integration!
Contaminants	oxygen	SOx , NOx , oxygen
Movement	wind, fans	fans

- Short term: CO₂ source for fuel or chemical synthesis
 - Long term: CO_2 sequestration climate change

GeorgiaInstitute

iechnologyy

Air Capture Approaches:

- Supported amine adsorbents (TSA/VSA)
- Humidity swing adsorbents
- Aqueous alkaline solutions (APS report)
- Aqueous amine solutions (submarines)
- Solid alkaline adsorbents (high temperature)
- Mineral sequestration

- Low Pressure Drop, High Surface Area Contactor:
 must move 125-375 X more gas through process vs. flue gas
- Adsorbent with strong binding energies with CO₂ (thermodynamics)
 must adsorb a large amount of CO₂ at low P_{CO2}.
- 3. Adsorbent and process design that allows for rapid adsorption/desorption rates (kinetics)
 - need to remove massive amounts of CO₂.
- 4. Low cost source of energy for adsorbent regeneration by temperatureswing.
 - adsorption is exothermic, desorption is endothermic
- 5. Acceptable capital costs and ultra-long process/material lifetime
 sorbent degradation and lifetime is a critical element.

- 1. Low Pressure Drop, High Surface Area Contactor:
 - must move 125-375 X more gas through process vs. flue gas

Oxide monoliths:

Georgia Institute of Technology School of Chemical & Biomolecular Engineering

- (i) commercially available (Corning)
- (ii) low cost
- (iii) low pressure drop [100-200 Pa or 0.015-0.03 psi]
- (iv) easily coated with adsorbent materials
- (v) high surface area

GeorgiaInstitute

off **Tech**hology School of Chemical & Biomolecular Engineering

Adsorbent with strong binding energies with CO₂ (thermodynamics)
 must adsorb a large amount of CO₂ at low P_{CO2}.

Choi et al. ChemSusChem 2011, 4, 628.

- 3. Adsorbent and process design that allows for rapid adsorption/desorption rates (kinetics)
 - need to remove massive amounts of CO₂.

Air capture is an extraction, not a purification: capture what is economically feasible

- -- rapid initial uptake
 to 70+% total capacity
 = "working capacity"
- practical conditions, gas velocity 2-5 m/s working capacity, <0.5 h

Monolith contactor yields good kinetics

School of Chemical & Biomolecular Engineering

Georgialnstitute

fechmologiy

- 4. Low cost source of energy for adsorbent regeneration by temperatureswing; Adsorption is exothermic, desorption is endothermic
- Amine adsorption occurs at ambient temperatures (0-35 ° C)
- Only low grade heat for regeneration (80-100 ° C) = waste heat.
- Steam-stripping gives pure CO₂ upon compression = highly efficient

=

Low grade waste heat from:

Georgia Institute of Technology School of Chemical & Biomolecular Engineering

- (i) Manufacturing processes
- (ii) Solar-thermal heating

minimal costs in short term

- 4. Low cost source of energy for adsorbent regeneration by temperatureswing; Adsorption is exothermic, desorption is endothermic
- Amine adsorption occurs at ambient temperatures (0-35 ° C)
- Only low grade heat for regeneration (80-110 ° C) = waste heat.
- Steam-stripping gives pure CO₂ upon compression = highly efficient

- Low grade waste heat from:
 - (i) Manufacturing processes
 - (ii) Solar-thermal heating = minimal costs in short term

Li et al. ChemSusChem 2011, 3, 899.

School of Chemical & Biomolecular Engineering

GeorgiaInstitute

lechmollogty

- 5. Acceptable capital costs and ultra-long process/material lifetime - sorbent degradation and lifetime is a critical element.
 - Capital costs (as in PCC) significant, installations big (0.01 m² / tonne CO₂-yr)
 - Capital costs for large scale equipment can be estimated.
 - Largest cost unknown = lifetime of adsorption media.

Global Thermostat, LLC, is a technology start-up that is incorporating GT-designed sorbents into a pilot-scale air capture process, pilot testing at SRI in Menlo Park, CA.

Conflict-of-Interest Statement: Georgia Tech receives research funding from Global Thermostat, LLC, and Jones has a financial interest in Global Thermostat Operations, LLC.

- Low Pressure Drop, High Surface Area Contactor:
 must move 125-375 X more gas through process vs. flue gas
- Adsorbent with strong binding energies with CO₂ (thermodynamics)
 must adsorb a large amount of CO₂ at low P_{CO2}.
- 3. Adsorbent and process design that allows for rapid adsorption/desorption rates (kinetics)
 - need to remove massive amounts of CO₂.
- Low cost source of energy for adsorbent regeneration by temperatureswing.
 - adsorption is exothermic, desorption is endothermic
- 5. Acceptable capital costs and ultra-long process/material lifetime - sorbent degradation and lifetime is a critical element.

Air Capture Summary:

- Supported amine adsorbents are promising materials for the extraction of CO₂ from ambient air.
- Supported amines offer the advantage of <u>high capacities</u> (1-2 mol CO₂/kg sorbent) and operation in all humidity levels.
- Reasonable adsorption kinetics achieved with **monolith contactors**.

- <u>**Primary amines**</u> are most effective air capture adsorbents, also most resistant to oxidation.
- Optimizing swing capacity and sorbent lifetime ongoing......

