Progress on Moisture Swing Sorbents

Klaus S. Lackner Columbia University

April 2014

Three Rules for Technological Fixes

D. Sarewitz and Richard Nelson:

Three rules for technological fixes, *Nature*, 2008, 456, 871-872

- I. The technology must largely embody the cause-effect relationship connecting problem to solution.
- II. The effects of the technological fix must be assessable using relatively unambiguous or uncontroversial criteria.
- III. Research and development is most likely to contribute decisively to solving a social problem when it focuses on improving a standardized technical core that already exists.

"... direct removal of CO_2 from the atmosphere — air capture — satisfies the rules for technological fixes. Most importantly, air capture embodies the essential cause–effect relations — the basic go — of the climate change problem, by acting directly to reduce CO_2 concentrations, independent of the complexities of the global energy system (Rule I). There is a criterion of effectiveness that can be directly and unambiguously assessed: the amount of CO_2 removed (Rule II). And although air-capture technologies have been remarkably neglected in both R&D and policy discussions, they nevertheless seem technically feasible (Rule III)."

Make the air do your work

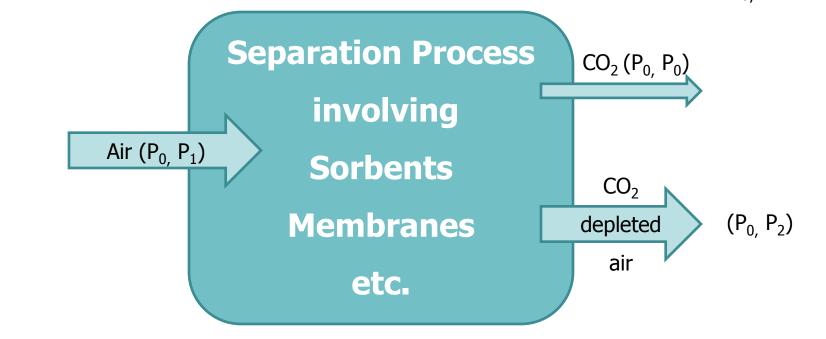
• Air carries kinetic energy

• Plenty to move the air

\circ Air carries thermal energy

• sufficient to evaporate water

• Air carries chemical potential

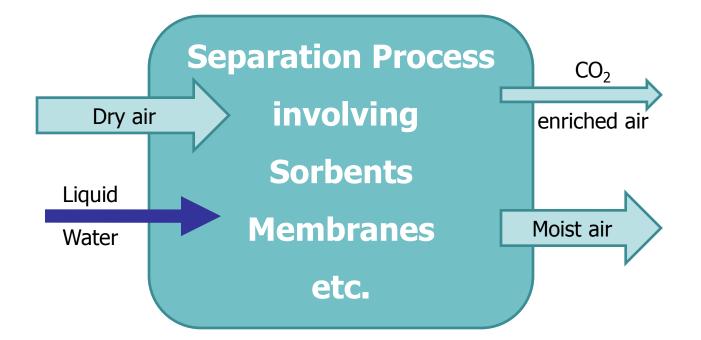

- out of equilibrium with water
- sufficient to compress CO₂ two hundredfold

Take advantage of the resource you have

Separation of a gas stream

Theoretical minimum free energy requirement for the regeneration is the free energy of mixing

Gas pressure P_0 CO₂ partial pressure P_x Denoted as (P_0 , P_x)

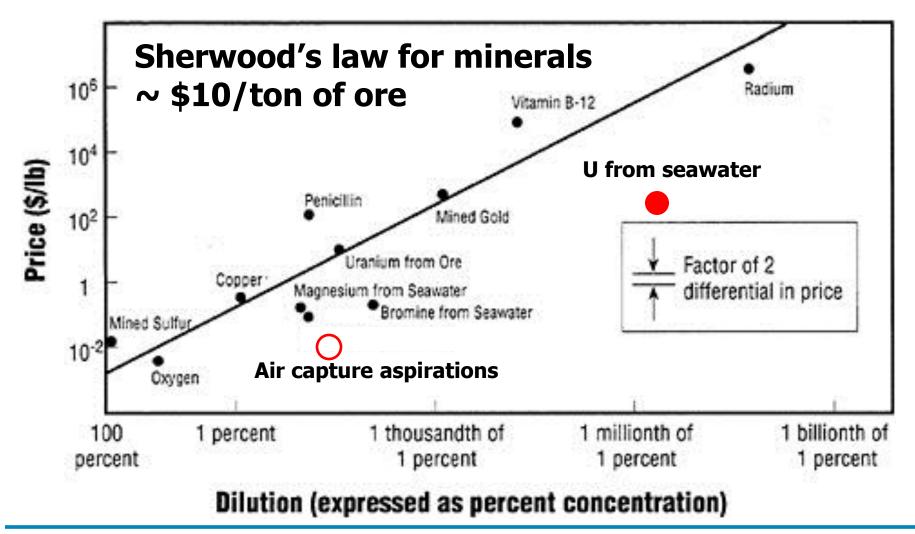


$$\Delta G = RT \left(\left(\frac{P_0 - P_2}{P_1 - P_2} \right) \frac{P_1}{P_0} \ln \frac{P_1}{P_0} - \left(\frac{P_0 - P_1}{P_1 - P_2} \right) \frac{P_2}{P_0} \ln \frac{P_2}{P_0} + \left(\frac{P_0 - P_1}{P_0} \right) \left(\frac{P_0 - P_2}{P_0} \right) \frac{P_0}{P_1 - P_2} \ln \frac{P_0 - P_1}{P_0 - P_2} \right) \frac{P_0}{P_0 - P_2} \ln \frac$$

Specific irreversible processes have higher free energy demands

Free energy from water evaporation

Water evaporation can drive CO₂ capture



Free energy of water evaporation at a relative humidity *RH:* $\Delta G = RT \ln(P/P_{sat}) = RT \ln(RH)$

Ball park estimate: 2.5 kJ/mol 140 MJ/m³ @ 20¢/m³ 0.5¢/kWh

Capture of CO₂ from ambient air

not your run-of-the-mill separation problem

Artificial kelp to absorb uranium from seawater

• Passive, long term exposure to water

- Braids of sorbent covered buoyant plastic
- Anchored to the floor
- Replaced initially active systems

Low energy sorbent

- Laminar flow over sorbent
- Uptake is limited by boundary layer transport

Regeneration

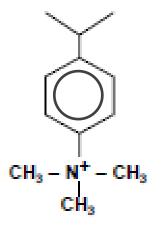
 $\circ~$ After harvesting the strings

• Gross violation of Sherwood's Law

- Cost estimates range from \$200 to \$1200/kg
- Sherwood \$3 million/kg

Artificial kelp to absorb uranium from seawater

- Passive, long term exposure to water
 - Braids of sorbent covered buoyant plastic
 - Anchored to the floor


Coster = offent b + c log(D) • Laminar flow over sorbent

- Uptake is limited by boundary layer transport
- Regeneration
 - After harvesting the strings must make a small
- Gross violation of Sherwood's Lav
 - Cost estimates range from \$200 to \$1200/kg
 - Sherwood \$3 million/kg

Anionic Exchange Resins

Solid carbonate "solution" Quaternary ammonium ions form strong-base resin

Type I Strong Base Resins

- Positive ions fixed to polymer matrix

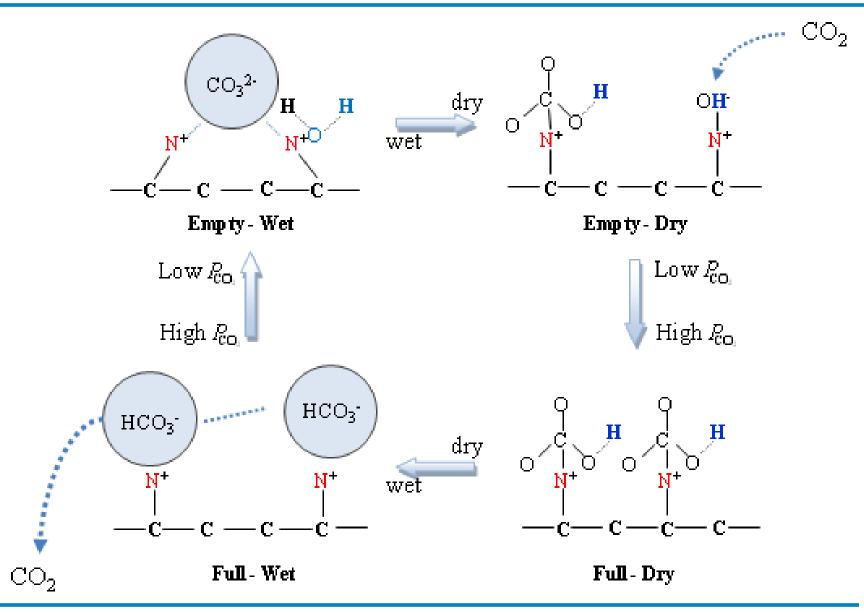
 Negative ions are free to move
 Negative ions are hydroxides, OH⁻
- Dry resin loads up to bicarbonate $\circ OH^- + CO_2 \rightarrow HCO_3^-$ (hydroxide \rightarrow bicarbonate)
- Wet resin releases CO_2 to carbonate \circ 2HCO₃⁻ \rightarrow CO₃⁻⁻ + CO₂ + H₂O

Moisture driven CO₂ swing

Membrane material

thin sheets

Snowpure electrochemical membrane (1mm thick)


Polypropylene matrix with embedded fine resin particles (25µm)

Quaternary ammonium cations Carbonate/bicarbonate form

1.7 mol/kg charge equivalent

The moisture swing – water driven

Progress on several fronts

Better form factors

• Embedded resin powder into paper matrix

Protection from liquids

Tyvek and similar barriers

Alternative Sorbents

Activated carbon impregnated with carbonate

• Molecular dynamics results

• Humidity swing is calculable

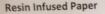
Paper Air Filters

A Tyvek[®] Pouch

Alternative sorbent options

Activated carbon

 \circ No discernable moisture swing


Carbonate brines

No discernable moisture swing

Carbon impregnated with carbonate

- \circ Strong moisture swing
- Moisture induced pressure change is small

Different materials for sorption

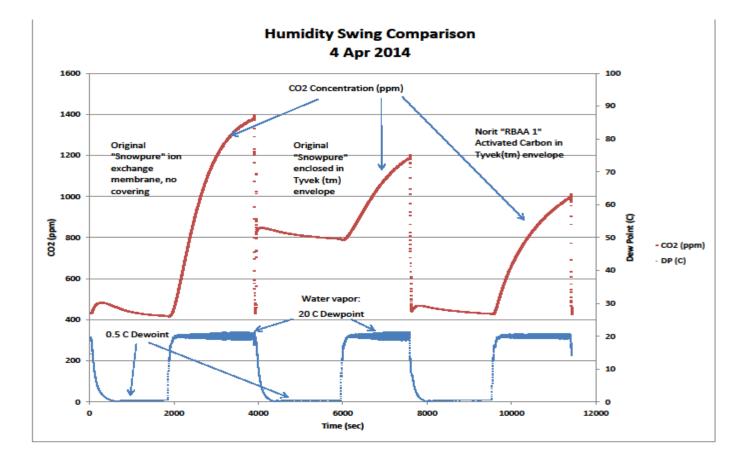
Potassium Carbonate

Sodium Carbonate

Norit[®] RBAA 1 Carbon

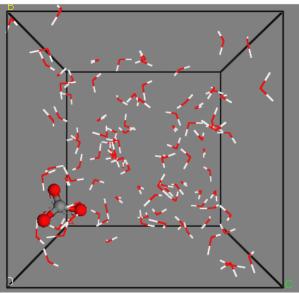
Norit® RBAA 1 + Sodium Carbonate

Norit[®] Darco G60

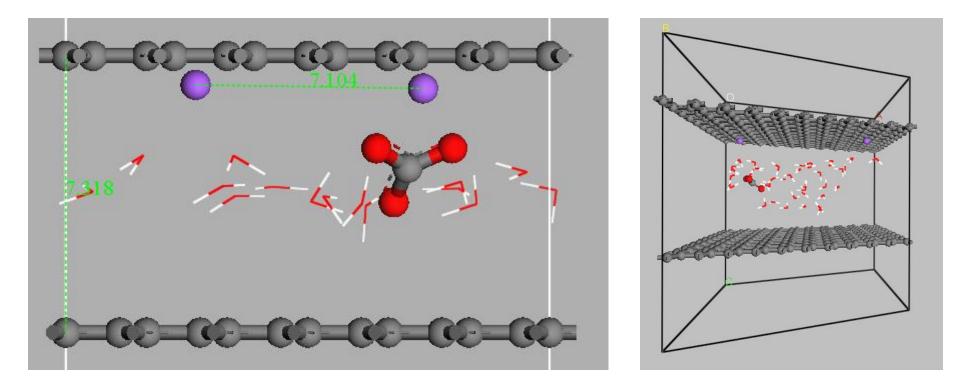

Norit® Darco G60 + Sodium Carbonate

Different samples tested for moisture swing

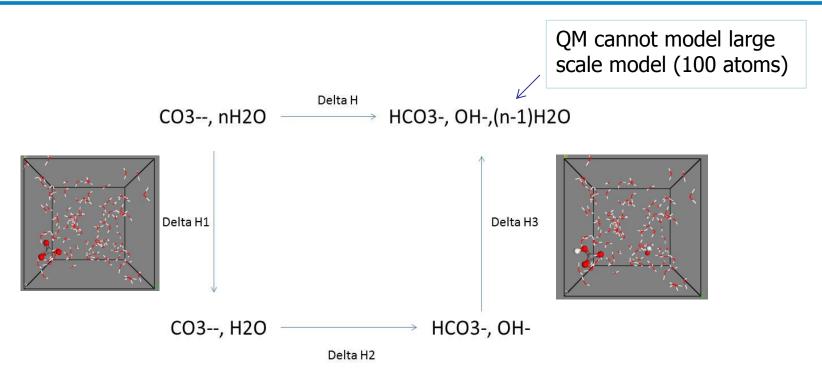
Tyvek® barrier for sample comparison


Membrane without Tyvek[®], with Tyvek[®], and Carbonate impregnated activated carbon

Molecular dynamics calculations


Xiaoyang Shi

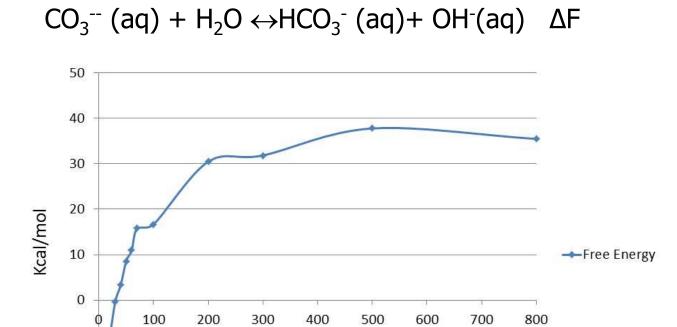
- Learned how to set up models
- Learned how to run test examples
- Using mainly public domain software
 Affordability
 - \circ Flexibility


Carbonate ion hydration

Geometry Configurations of Models

Purple atoms are fixed cations (fashioned after sodium), grey atoms are graphene as confined layers, and carbonate ions with water molecules are in the confined region.

Methodology


Delta H= Delta H1 + Delta H2 + Delta H3

 $CO_3^{--} \cdot nH_2O \Leftrightarrow HCO_3^{-} \cdot m_1H_2O + OH^{-} \cdot m_2H_2O + (n-1-m_1-m_2)H_2O$

 $CO_3^{--} + H_2O \Leftrightarrow HCO_3^{-} + OH^{-}$

reaction energy is -48.3255 kcal/mol based on QM calculation

Free Energy Change with Humidity

Number of water molecules

-10

-20

-30

Carbonate ion and bicarbonate with hydroxide ions free energy changes with the number of water molecules in the calculational volume