CO₂ Conversion to Fuels

A Progress Report on Liquid Light Inc.

Andrew Bocarsly

Princeton University Department of Chemistry | Frick Chemistry Laboratory

Columbia University, April 2014

Products and Energetics

One Cannot Achieve the Electrochemical Energy Goals without an Efficient Catalyst

Aromatic Amines Drop the Activation Overpotential to ~200mV

MeOH Evolving PEC Using p-GaP

 $CO_2 + 6e^- + 6H^+ \rightarrow CH_3OH + H_2O$ pH 5.2, 10mM pyridine

96% Faradaic Yield of MeOH @ 200mV UNDERpotential

CO₂ to Formate at an In Surface

The Liquid Light Process

Highlights

Abundant cathode materials

Efficient and selective catalysts

Low cell voltages (energy efficient)

Stability

CO₂ Generating Source

Solar Fuel is Here!

System Runs Utilize Real Sunlight (AM 1.5)

Liquid Light's 100cm² scale electrochemical cell test bench

Photo shows 100cm2 active area electrochemical cell for conversion of CO2 to multi-carbon product along with test bench used to operate and control electrochemical cell. System includes control of electrolyte feed and circulation and instrumentation for process monitoring and control.

Controls

They Did It! Anyone want a good deal on Oxalate?

Acknowledgement

SLIQUIDLIGHT

Advancing CO₂
Chemistry

A Complex Synergy

p-GaP MeOH Evolving Cell

Formic Acid System Scale-Up

Currently producing <u>target chemicals</u> at grams/day with product concentration streams \geq 3% and CD > 100 mA/cm² and 1000 hr stability testing, now scaling up to <u>kg/day</u> over the next year

What should we do with CO₂?

Carbon-Carbon Coupling is Possible!

Counting the Cost

If 1 Mole of CO₂ is converted:

According to the US DOE a gas fired power plant generates 1135 pounds of CO₂/MWH

2.82 Moles CO₂

-1.00 Moles Consumed

1.82 Moles Net Formed!