

Regenerable polyamine based solid adsorbents for CO₂ capture from the air

Alain Goeppert

Loker Hydrocarbon Research Institute and Department of Chemistry University of Southern California Los Angeles, CA 90089-1661

Air Capture and its Application in Closing the Carbon Cycle Lenfest Center for Sustainable Energy Earth Institute, Columbia University April 14th 2014

Annual Global CO₂ Emissions- 1750-2005

More than 30 billion tonnes of CO_2 per year released into the atmosphere!

About half the CO₂ emissions accumulate in the atmosphere

Presently around 15 billion tonnes per year

CO₂ concentration in the atmosphere and climate change

Atmospheric CO₂ concentration measured at Mauna Loa, Hawaii Keeling Curve

Alternative Energies?

Hydropower Geothermal energy Wind energy Solar energy Biomass Ocean energy (waves, tides, thermal) Nuclear energy

Why don't we use more alternative energies?

- Mainly a problem of cost
- Fossil fuels are still the biggest bargain
- Most renewable energies are intermittent
- -They produce mostly electricity

 Difficult to store (storage in the form of Hydrogen, methanol, etc)

Sources of CO₂

Geothermal Vents Fermentation Processes Natural Gas Wells Cement Plants Fossil Fuel Burning Power Plants Aluminum Plants Air Itself

Why capture CO₂ from the air?

Important to address ~ 50% of anthropogenic CO_2 emissions from small distributed sources such as home and office heating and cooling and the transportation sector

Collection of CO_2 from billions of small fossil fuel burning units at the source is difficult and not practical and/or economical

Direct air capture (DAC) of CO_2 would allow the collection of CO_2 from any source, small or large, static or mobile.

Independence from CO_2 point source means the capture unit could be placed anywhere, offering considerable flexibility

Lower concentration of contaminants such as NO_x , SO_x and particulates in air compared to flue gases

Eventually, DAC could even be used to lower atmospheric CO_2 concentrations

Nature does it. Why not us? CO₂ fixation by photosynthesis (carbon neutral)

 $nCO_2 + nH_2O \xrightarrow{Chlorophyll} n(CH_2O) + nO_2$ Sunlight

Biofuels – ethanol, butanol, vegetable oils (biodiesel) – a small % of the energy mix

- Biomass will be able to fulfill at most 10-15% of energy needs in a sustainable way
- Land availability and use
- •Water resources Irrigation
- •Food security vs Energy security

•Fertilizer use (nitrogen fertilizers from NH_3 (synthetic $N_2 + H_2$, Haber Bosch process)

- •Processing technologies, energy use
- •Overall energy balance (life cycle analysis)

Sun is the source of most energy on Earth- **past, present and future** ~130,000 TW continuous- A reliable nuclear fusion reactor 150 million km away!

Thermodynamics of CO₂ capture from the air

Minimum thermodynamic energy to extract CO_2 from the air is relatively low at ~ 20 kJ/mol (1.6 GJ/tCO₂) at RT

RT In (P/P_0)

 P_0 : partial pressure in air 0.0004 Atm P: final pressure of CO₂ in the enriched gas (ideally 1 Atm or higher) R is the ideal gas constant (8.3 J.mol⁻¹.K⁻¹)

Energy required grows only logarithmically with dilution

 CO_2 concentration in air 0.04% CO_2 concentration in flue gas ~10% ~ 250 x lower

Theoretically CO₂ capture from air would require only 2 to 4 times energy as capture from flue gases

Actual energy needed for the entire system is of course much higher

From a thermodynamic point of view DAC should not be a problem

CO₂ capture from the air

Current and future applications:

- Removal of CO₂ in closed environment such as submarines and spacecrafts
- Production of CO₂ free air for alkaline fuel cells and batteries
- Capture of CO₂ for sequestration and recycling to fuels and materials

Technologies for CO₂ capture from the air

Based on chemisorbents

- Inorganic chemisorbents NaOH, LiOH, KOH, Ca(OH)₂, K₂CO₃

 $CO_2 + 2OH^- \longrightarrow CO_3^{2-} + H_2O$

Unit for CO₂ removal in the space station currently undergoing tests (source: NASA)

- Organic or hybrid chemisorbent materials

Physically adsorbed amines and polyamines, immobilized amine and polyamines, Hyperbranched aminosilicas, anionic exchange resins

PEI impregnated on polymethylmethacrylate, SBA-15, alumina, silica, carbon fibers, etc...

Adsorption/desorption cycle of the absorbents

exothermic (releases energy)

Regeneration of the sorbents is the energy demanding step

Absorption/desorption of CO_2 are two mirror reactions

Absorption $A + CO_2 \rightarrow ACO_2$

Inorganic sorbents bind CO₂ strongly In most cases they require high temperatures for the regeneration step (700-900 °C) but are relatively stable over numerous absorption/desorption cycles

$$CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)} \triangle H^0 = +179.2 \text{ kJ/mol}$$

High energy demand for the regeneration step

Supported organoamine hybrid adsorbents

Bind CO₂ less strongly and require less harsh conditions for regeneration, such as lower temperatures (80-200 °C)

Can be divided in 3 main categories depending on the type of interaction between support and active sorbent and mode of preparation

Class 1: Amine or polymeric amine physically adsorbed on the support material

Class 2: Amines immobilized (anchored) on the support

Work on CO₂ capture from the air at the Loker Hydrocarbon Research Institute

We decided to focus our effort on finding an easy to prepare, inexpensive but at the same time efficient adsorbent based on a Class 1 hybrid material

Interest for various reasons:

- Capture of CO₂ for recycling to fuels and materials such as methanol, DME, hydrocarbons (methanol economy)

- Capture of CO_2 to produce CO_2 free air for use in iron/air batteries with an alkaline electrolyte (ARPA-e)

- Indoor air quality (reduce the amount of CO₂ in enclosed spaces)

Solid hybrid adsorbent preparation

Structure of branched polyethylenimine (PEI)

Solid support: fumed silica (300-380 m²/g)

Prepared easily by

- Dissolving the polyamine in methanol and mixing the solution into a suspension of support in methanol.
- Evaporation of the solvent and drying.

Adsorbent	PEI content	
FS-PEI-50	50%	
FS-PEI-33	33%	Can be prepared in
FS-PEI-25	25%	Can be prepared in
FS-PEI-20	20%	very short time

Reaction of polyethylenimine (PEI) with CO₂

Under dry conditions: carbamate formation. Two amino groups needed for each CO_2 molecule

Under humid conditions: bicarbonate formation. In theory only one amino group needed for each molecule of CO_2

Setup and experimental procedure for CO₂ capture from the air

CO₂ analyzer calibrated prior to each measurement

Bench-top test system for CO₂ adsorption experiments

Adsorption of CO₂ from the air at 25 ° C on FS-PEI-50

Amount of catalyst : 2.72 g Flow rate: 335 mL/min air

Goeppert, A.; Czaun, M.; May, R. B.; Prakash, G. K. S.; Olah, G. A.; Narayanan, S. R. J. Am. Chem. Soc. 2011, 133, 20164

CO₂ Adsorption from the air on FS-PEI as a function of PEI loading

Adsorbent	Surface area (m ² /g)	Volume of pores (cm ³ /g)	Total CO ₂ adsorption from air (mg/g)	CO ₂ adsorption from air under 10 ppm (mg/g)	Ratio adsorption under 10 ppm/total adsorption
FS-PEI-50	27.2	0.40	73.7	51.8	0.70
FS-PEI-33	79.9	1.06	50.0	40.8	0.82
FS-PEI-25	108	1.42	34.5	29.4	0.85
FS-PEI-20	114	1.49	16.8	15.8	0.94

CO₂ Adsorption from the air as a function of flow rate

CO₂ Adsorption from the air as a function of the molecular weight of PEI

Goeppert, A.; Zhang, H.; Czaun, M.; May, R. B.; Prakash, G. K. S.; Olah, G. A.; Narayanan, S. R. ChemSusChem, in press

CO₂ Adsorption from the air on FS-PEI-50 as a function of temperature

Effect of the temperature on the desorption on FS-PEI-50

The higher the desorption temperature, the faster the desorption kinetics

Regeneration of FS-PEI adsorbents in short term cycling tests

FS-PEI-33

	CO ₂ adsorption before	
	breakthrough	$10tar CO_2$
Pass	(mg/g)	adsorption (mg/g)
1	42	56
2	39	51
3	40	53
4	40	53

FS-PEI-50

	CO ₂ adsorption before breakthrough	Total CO ₂
Pass	(mg/g)	adsorption (mg/g)
1	39	75
2	38	73
3	35	72
4	36	74

Regeneration at 85 °C under vacuum

110 cycles adsorption/desorption at 75°C on FS-PEI-50

No significant loss in adsorption capacity under CO_2/N_2

Adsorption of CO_2 from the air at 25 ° C on FS-PEI-33. Effect of humidity

Conditions	mg/g adsorbent	mmol/g adsorbent	mg/g PEI	mmol/g PEI
Dry	52	1.18	156	3.55
Humid	78	1.77	234	5.32

In the case of zeolites, humidity stops almost entirely the adsorption of CO₂

Conclusions on CO₂ adsorption from the air using fumed silica / PEI adsorbents

• Absorption of CO_2 from the air is technically feasible

- Amine based adsorbents show promises
 - relatively high adsorption capacity even under humid conditions
 - regeneration at low temperature (70-100 ° C)
 - fast kinetics of reaction
 - easy to prepare using inexpensive starting materials
 - solids: does not require separation or heating of water
- Humidity improves the adsorption of CO_2 on amine based materials

 Promising adsorbent for air purification in closed environment or alkaline fuel cells

Utilization and recycling of CO₂ from the air Anthropogenic carbon cycle Mimic Nature's photosynthetic cycle

Sustainable recycling of atmospheric CO₂ to fuels and materials

Methanol economy

J. Am. Chem. Soc. 2011, 133, 12881

J. Org. Chem. 2009, 74, 487-498

George A. Olah, Alain Goeppert, and G.K. Surya Prakash WILEY-VCH

Beyond Oil and Gas: The Methanol Economy

Second Updated and Enlarged Edition, 2009

Acknowledgments

Professor George. A. Olah Professor G. K. Surya. Prakash Professor S. R. Narayanan Dr. Robert Aniszfeld Dr. Miklos Czaun Hang Zhang Robert B. May

Thank you for your attention!

\$\$\$\$ USC Loker Hydrocarbon Research Institute

