
World Steel

PSM INDICADORES

Dados da WorldSteel, demonstram que nos últimos 10 anos Segurança de Processos aparece como descrição de causas dos acidentes mundiais em Siderurgia.

Causas de Segurança de Processos incluem: Explosões, Incêndios, Gases e Asfixia, Aço Líquido e Falhas Estruturais.

Relevância

World

Bhopal (20.000+ †) 1984. **\$0.47**

Piper Alpha (167†) 1988. \$8.8B

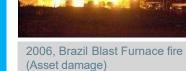
Texas City (15†) 2005.

Macondo Well (11†) 2010. \$42.2

Industry

2001, UK, Blast Furnace explosion (3†)

2007, China steel ladle (32†)

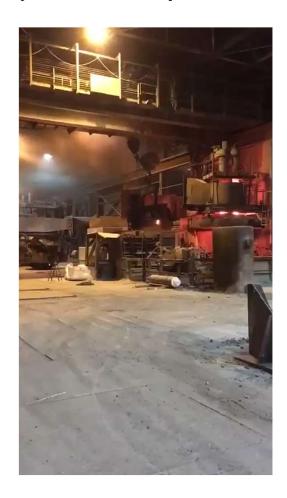


2018, India, Coke oven gas explosion (14†)

(Asset damage)

Steel **Industry**

2013, Mexico (11+)



Exemplos

Reações de metal líquido com outros materiais:

Exemplos

Escape de laminação - Reações em carregamento - Velocidade inadequada

Conceitos

Importante sobre LOPCLoss of Primary Containment

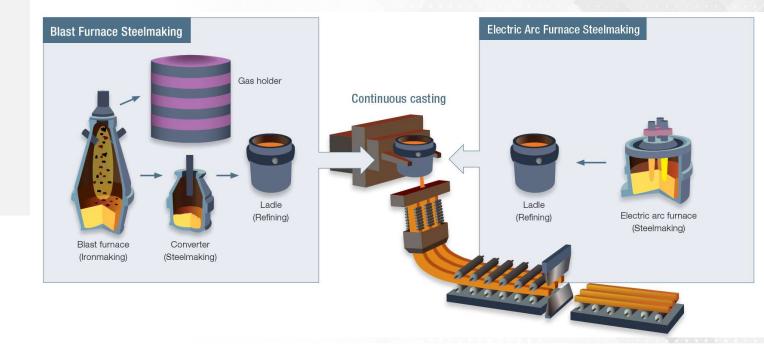
Uma liberação **não planejada** ou **não controlada** de material da contenção primária.

Conceitos

Explosion (A <u>release of energy</u> that causes a pressure discontinuity or shock wave.)

Uma <u>liberação de energia</u> que causa uma descontinuidade de pressão ou onda de choque.

O contato descontrolado água/metal fundido pode causar explosões de vapor. Trata-se de um fenômeno estritamente físico resultante da vaporização da água e onde as projeções de metal líquido e uma expansão volumétrica criam ondas de pressão que, expostas ao ar livre, transformam água/vapor levando a um aumento de volume por um fator de 1.700. Esse contato também pode dar origem a reações de oxidação-redução, que por sua vez geram hidrogênio que posteriormente queima à medida que é produzido ou causa efeitos explosivos muito poderosos.


Abrangência

Foco no Processo Produtivo.

- Altos Fornos
- Aciaria
- Laminação a Quente
- Tratamento Químico de Superfícies
- Utilidades (tratamento de água, torres de resfriamento, linhas de gases e subestações)
- Vasos de Pressão
- Tanques de Combustível/Químicos
- Pontes Rolantes (carga líquida)
- Gases
- Radioatividade
- Shredder

Riscos Analisados com consequências Críticas ou Catastróficas nas dimensões da Gestão de Riscos

Referência - CCPS + worldsteel

O CCPS no desenvolvimento do modelo de gestão, sugere 4 bases contendo 20 pilares para o PSM.

1	2	3	4		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Process Safety Culture	Compliance with Standards	Process Safety Competency	Workforce Involvement		Stakeholder Outreach	Process Knowledge Management	Hazard Identification and Risk Analysis	Operating Procedures	Safe Wok Practices	Asset Integrity and Reliability	Contractor Management	Training and Performance Assurance	Management of Change	Operational Readiness	Conduct of Operations	Emergency Management	Incident Investigation	Measurement and Metrics	Auditing	Management Review and Continuous Improvement
	Pillar I Understand Commit to Process Safety Process Safety Process Safety Process Safety							Pillar III Manage Risk							Pillar IV Learn from Experience					

(Adapted from [9])

Figure 6-4 The CCPS Risk Based Process Safety (RBPS) model

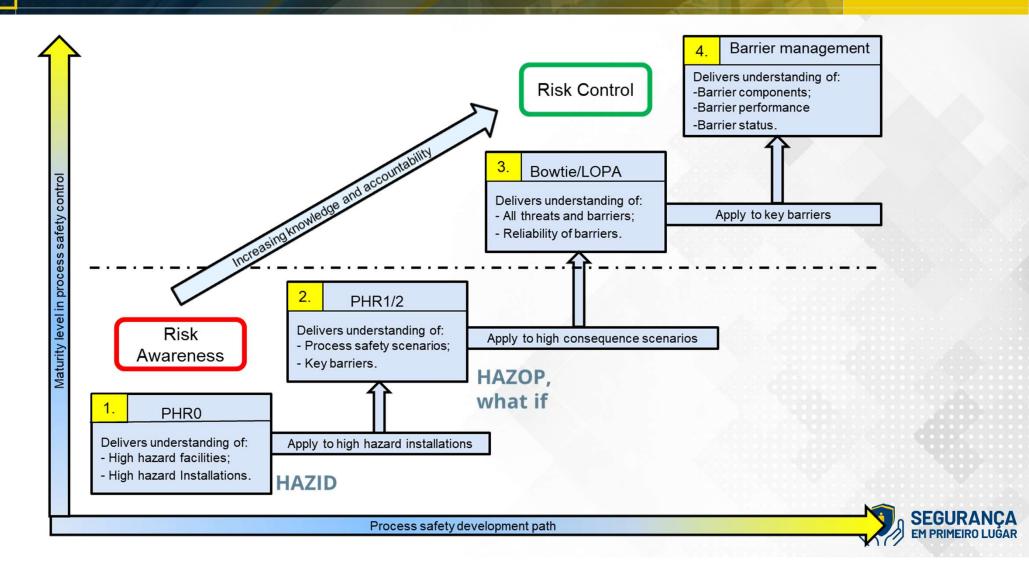
no modelo de gestão do CCPS e adequando a realidade dos ramos de atuação da associação, traz como modelo 6 grandes bases fundamentais.

PSM

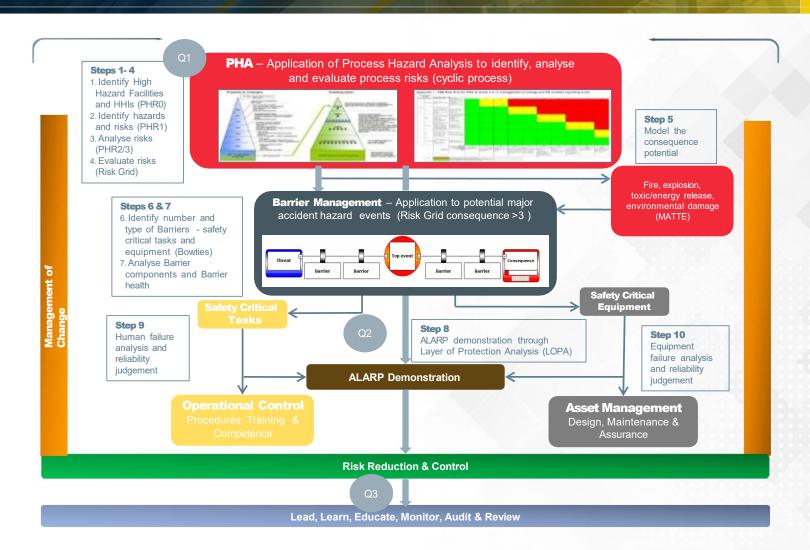
Modelo de Gestão

- 1.1 Cultura de PSM (wordsteel fundamentals)
- 1.2 Liderança e Competência
- 2.1 Análise de Processos
- 2.2 Mapa de Processos
- 2.3 Trilha de Capacitação
- 3.1 Gestão de Riscos de PSM
- 3.2 Gestão de Modificações de PSM
- 4.1 Integridade Mecânica, Manutenção & Confiabilidade
- 4.2 Procedimentos Operacionais
- 4.3 Práticas Seguras
- 4.4 Gestão de Terceiros
- 4.5 Gestão de Emergências
- 5.1 Investigações
- 5.2 Auditorias
- 5.3 Lições Aprendidas
- 5.4 Melhoria Contínua
- 5.5 Indicadores

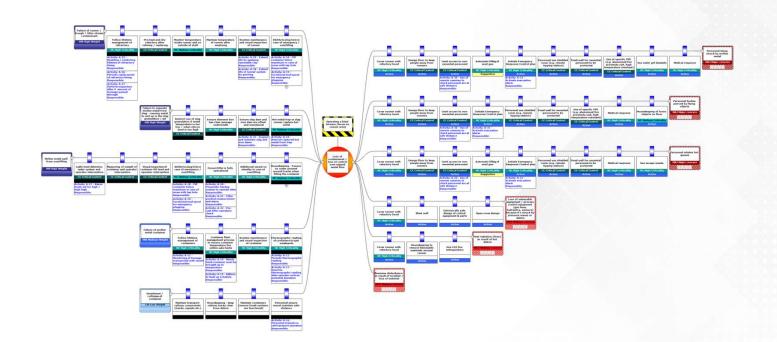
Manual de PSM (Diretrizes Mínimas)



Manual de Ferramentas de Riscos

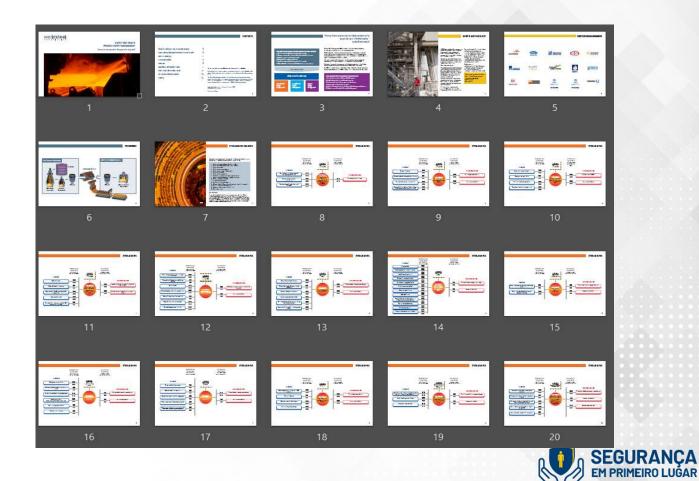

Gestão de Riscos

Gestão de Riscos



Novos BowTies

(1) Prevenção de interações entre metal fundido e água em altos-fornos e (2) Riscos de Redução. Os estudos recentes envolveram 35 indivíduos de 13 membros da empresa.

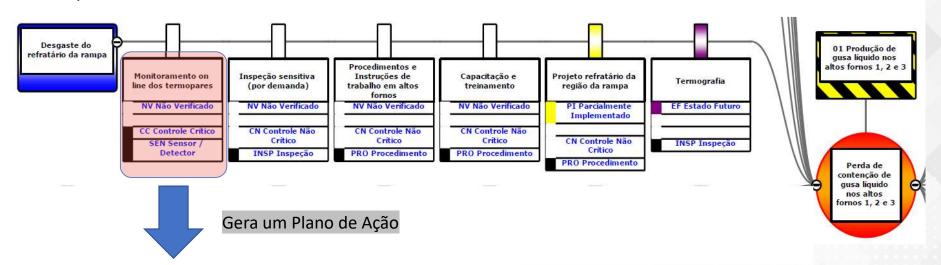


Análise de Riscos de Processo

Guia de cenários e diagramas de risco base para operações Siderúrgicas:

Análise de Riscos de Processo

Exemplo de análise de risco, através do método Bowtie:



PSM

Fluxo de Gestão de Barreiras via BowTie

Exemplo de barreiras em Bowtie:

Este A4 fornece informações necessárias para garantir a integridade desta barreira, responsáveis e nível de auditoria.

UI:	Divinópolis	Área:	ALF 1, 2 e 3	Código do A4	A4-ALF-01		
Evento Topo:	Perda de contenção de gusa líquido nos altos fornos 1, 2 e 3	Nome do Controle Crítico:	Monitoramento online dos termo pares	Status do Controle Crítico:	Não implementado		
Objetivo do Controle Rel	acionado: Identificar desgaste do refratário da rampa online.	Classificação de Controle Crítico	Detecção e Controle	Tipo de Controle Crítico:	Preventivo		
Requisitos de desempen	ho do controle crítico para atender os objetivos:	Atividades que podem ha crítico:	bilitar ou fortalecer o controle	Atividades que devem ser verificadas para atestar o desempenho de um controle crítico:			
 Paralisação da etapa sen limite de desgaste definido 	npre que o valor da temperatura esteja elevado ao	Inspeções periódicas e tes	ste de lógica e intertravamento	 Auditar processos de manutenção, inspeção, configuração de lógica, gestão de su pressão temporária e registros do equipament 			
 Paralisação para corretiv limites de segurança estab 	a e avaliação de integridade quando estiver fora dos elecidos.	Parâmetros de criticidade no supervisório	instalado e monitorado em alarme	Checar sobressalentes criticos e informações no SAP, disponbilidade e quantidade adequada.			
 Substituição do equipam detecção no supervisório. 	ento ou manutenção, quando apresentar falha de	3. Intertravamento deve cor Segurança Instrumentado	nstar como crítico no Sistema de	Checar registro de acionamentos e resposta ao controle			
			de gestão de mudanças de lógica de rária tem seu fluxo cumprido.				

Estas informações alimentam:

- Mapa de Processos
- Gestão de Riscos
- Plano de Investimento da Unidade
- Indicador de Integridade de Barreiras Críticas

Indicadores PSM

Salvar	Tier 1	Tier 2	Tier 3	Detalhamento
Incêndio (incluindo princípios)	0	0	0	
Explosão (incluindo shredder)	0	0	0	
Reação água com Aço Líquido	0	0	0	
Perda de Contenção de Aço Líquido	0	0	0	
Perda de Contenção de Gás (vazamento)	0	0	0	
Perda de Contenção de Líquidos Inflamáveis/tóxicos/corrosivos	0	0	0	
Falha Estrutural (incluindo estruturas geotécnicas)	0	0	0	
Escape de Barra	0	0	0	
Número de Acionamento de Sistemas de Segurança - NASS	0	0	0	
Radioatividade - fusão de fontes	0	0	0	
Radioatividade - contaminação de pessoas	0	0	0	
Radioatividade - não detecção de fonte no sistema primário (pátio de sucatas)	0	0	0	

PSM **API RP 754**

E quanto aos perigos típicos da indústria siderúrgica que não estão na lista API, como metais fundidos?

E quanto a misturas como gás de alto forno?

 Below the calculated Tier 1 and Tier 2 thresholds for a typical Coke Oven Gas mixture

									452.5	kg		45.25	kg
cog	vol%	wt%	Ср	M	Ср	Cv	K		Tier 1			Tier 2	
000			J/(kg K)	kg/mol	J/(mol K)	J/(mol K)	140	TQ kg	Release	m/m%	TQ kg	Release	m/m%
H ₂	62.14%	13.66%	14304	0.0020158	28.83	20.52	1.405	500	61.8	12.4%	50	6.2	12.36%
CO	5.52%	16.89%	1020	0.0280101	28.57	20.26	1.410	200	76.4	38.2%	20	7.6	38.21%
CH ₄	25.33%	44.49%	2220	0.0160423	35.61	27.30	1.305	500	201.3	40.3%	50	20.1	40.26%
C ₂ H ₆	0.61%	2.02%	1750	0.0300688	52.62	44.31	1.188	500	9.1	1.8%	50	0.9	1.83%
C ₂ H ₄	2.08%	6.42%	1530	0.028053	42.92	34.61	1.240	500	29.1	5.8%	50	2.9	5.81%
C ₃ H ₈	0.18%	0.89%	1670	0.0440953	73.64	65.33	1.127	500	4.0	0.8%	50	0.4	0.81%
C ₈ H ₁₂	0.17%	1.58%	1090	0.084159	91.73	83.42	1.100	1000	7.1	0.7%	100	0.7	0.71%
CO ₂	0.92%	4.45%	844	0.0440095	37.14	28.83	1.288	NA			NA		
N ₂	2.84%	8.69%	1040	0.0280134	29.13	20.82	1.399	NA			NA		
Ar	0.21%	0.91%	520	0.039948	20.77	12.46	1.667	NA			NA		
	100.00%	100.00%	3412	0.009136	31.17	22.86	1.364			100.0%			100.0%

