Chemical Looping Technology

by

L. S. Fan Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, Ohio 43210

> *Columbia University* April 16, 2014

"1st International Conference on Chemical Looping", Lyon, France, March 17-19 (2010). "1st Meeting of High Temperature Solids Looping Cycle Network", Oviedo, Spain, September 15-17 (2009).

Selective Oxidation in Chemical Looping Applications for Fossil Fuel Conversions and Solar Chemical Looping Systems

Comparison of OSU SYNGAS and Coal Direct Chemical Looping (CDCL) Processes with Traditional Coal to Hydrogen/Electricity Processes

Assumptions used are similar to those adopted by the USDOE baseline studies.

Exergy Analysis on Hydrogen Production

Economics on Chemical Looping Process

- Retrofit to conventional coal combustion process
- CDCL replaces existing PC boiler
 - Additional equipment for CO₂ compression and transportation required
- Techno-Economic analysis performed comparing CDCL to Base Plant with no CO₂ capture and 90% CO₂ capture via post-combustion MEA process

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, "Combustion Looping Using Composite Oxygen Carriers" U.S. Patent No. 7,767,191 (2010, priority date 2003)

The CDCL process can be also used for high efficient hydrogen production

Large Scale Chemical Looping Process Demonstration

Organization	Process/Type	Capacity	Features
Hunosa, Spain	<i>CaOling</i> – CaO looping / Type II	2 MW _{th}	Pilot plant to capture CO_2 from the flue gas from 50 MWe coal power plant
Technical University of Darmstadt, Germany	LISA – limestone-based absorption of CO ₂ / Type II	1 MW _{th}	Capture plant is an extension to a 1052 MWe hard coal-fired power plant
Industrial Technology Research Institute (ITRI), Taiwan	Carbonation-calcination and carbonation-calcination-hydration (Ohio State CCR process) looping reactions to capture CO_2 / Type II	2 MW _{th}	Limestone sorbents are used with spent CaO fed to cement industry
Technical University of Darmstadt, Germany	ECLAIR - emission free chemical looping coal combustion process using ilmenite / Type I	1 MW _{th}	The pilot unit is for solid fuel conversion and designed based on CFB concept
Alstom, U.S.	Calcium sulfate chemical looping combustion / Type I	3 MW _{th}	The oxygen carriers are CaS/CaSO ₄
Ohio State University, U.S.	High pressure syngas chemical looping (SCL) gasification process using iron based oxygen carrier / Type I	250 kW _{th} - 3MW _{th}	SCL enables high purity hydrogen production with in-situ CO_2 capture via countercurrent moving bed reactor design; Syngas is from KBR gasifier

B&W and OSU Chemical Looping Combustion – 3 MW_{th} Pilot Demonstration (see B&W press release; work in progress)

Oxygen Carrier Particle Development

Ellingham Diagram: Selection of Primary Metal

Core-Shell Particle Formation through Cyclic Gas-Solid Reactions

 $4Fe_{(s)} + 3O_{2(g)} \rightarrow 2Fe_{2}O_{3(s)} \qquad (1)$ $Fe_{2}O_{3(s)} + 3H_{2(g)} \rightarrow 2Fe_{(s)} + 3H_{2}O_{(g)} \qquad (2)$ If the cyclic reactions proceed through Fe cation diffusion, core-shell structure forms, e.g. Fe2O3 + Al2O3.

If the cyclic reactions proceed through O anion diffusion, core-shell structure does not forms, e.g. Fe2O3 + TiO2.

*Al2O3 is only a physical support, while TiO2 alters the solid-phase ionic diffusion mechanism

Fe2O3+Al2O3 VS Fe2O3+TiO2

Modes of CFB Chemical Looping Reactor Systems

current dense phase/moving bed flows

Chalmers University CLC System

OSU CLC System

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, "Combustion Looping Using Composite Oxygen Carriers" U.S. Patent No. 7,767,191 (2010) (priority date:2003).

Reducer

CO₂, H₂O

Fuel

Chemical Looping Reactor Design

OSU SYNGAS Chemical Looping Process

Main reactions:

Reducer	$C_xH_yO_z + Fe_2O_3 \rightarrow CO_2 + H_2O + Fe$
Oxidizer	$\mathbf{Fe} + \mathbf{H}_2\mathbf{O} \rightarrow \mathbf{Fe}_3\mathbf{O}_4 + \mathbf{H}_2$
Combustion Train	$Fe_3O_4 + O_2 \rightarrow Fe_2O_3 + Heat$

Overall reaction

 $C_xH_yO_z+H_2O/O_2 \rightarrow CO_2+H_2/Heat$

Possible Oxygen Carriers:

 $Fe_2O_3 - Fe / FeO$

General Observations:

- 2 Moving Bed + 1 Entrained bed reactors
- Very High Fuel Conversion
- Near 100% in-situ CO₂ capture
- High Purity H₂ generation
- High Solid Conversion
- Low Solid Circulation Rate

25 kW_{th} OSU Sub-Pilot SCL Unit

Recent Unit Demonstration

- Over 300+ hours operation
- Average CO₂ purity generated throughout run > 99%
- >99.99% hydrogen purity at steady state
- Steady Pressure Profile throughout Test run

Differential Pressure Profile

Reducer Gas Composition

2:09:36 PM

2:45:36 PM

3:21:36 PM

20

0

1:33:36 PM

200+ Hour Sub-Pilot Continuous Run - Sample Results

Once-Through Reducer Carbon Conversion Profile

- Continuous steady >90% carbon conversion from reducer throughout all solid fuel loading (5- 25kW_{th})
- <0.25% CO and CH₄ in reducer outlet = full fuel conversion to CO₂/H₂O
- <0.1% CO, CO₂, and CH₄ in combustor = negligible carbon carry over, nearly 100% carbon capture

CDCL NO_x/SO_x Analysis

	Reducer	Combustor
SO _x (ppm)	190-1170	0 - 70
NO _x (Ib/MMBTU)	0.100 - 0.200*	~ 0

*Conventional PC Boiler NO_x Generation = 0.2 – 0.5 lb/MMBTU¹

1 MW_{th} Chemical Looping Combustion System

