ASC 2020 - VIRTUAL UNDERGRADUATE STUDENT POSTER COMPETITION

WINNERS

Group 01	Catalysis & Reaction I	Engineering	
1	Eric Musa	University of Michigan	Optimized Machine Learning Potential Reconstruction for Enhanced Catalysis Research
2	Jeffrey Hoffmann	University of Pittsburgh	Lifespan Characterization of Oxidized Nife Catalysts for Alkaline Oxygen Evolution Reaction
Group 02	Computing and Proce	ss Control	
1 (tie)	Stephen Quiton	University of Southern California	A Matrix Completion Algorithm to Recover Modes Orthogonal to the Minimum Energy Reaction Path
1 (tie)	Maya Desai	Rowan University	Development of Wastewater Treatment Networks Using the P-Graph Approach
Group 03	Education & General F	Papers	
1	Leonor Teles	University of Rochester	Stroke Prediction Using Carotid Artery CFD Simulations
2	Vedika Shenoy	University of California - Santa Barbara	Designing and Characterizing a 3D Printed Staggered Herringbone Mixer
Group 04	Environmental	Case Western Deserve University	Elucidation of Radical Species in an Electrolytic Non-Equilibrium Plasma-Water
1	Kevin Pataroque	Case Western Reserve University	System Multi Objective Approach to Designing Solvent Recovery Pathways Via Economic
2	Austin Lehr	Rowan University	and Environmental Metrics
Group 05	Food, Pharmaceutical	& Biotechnology I	
1	Ann Metzloff	Cornell University	Development of a New Generation of Robust pH-Responsive Fluorescent Proteins for Use in Intracellular Imaging Studies
2	Ishmamul Hoque Sadab	Bangladesh University of Engineering and Technology, Bangladesh	A Molecular Docking Approach to Identify Effective Stilbene Derivatives Against the Main Protease of Sars Cov-2
Group 06	Food, Pharmaceutical		Histochemical Analysis to Investigate the Efficacy and Safety of Suprachoroidal
1	Isabella Bowland	Georgia Institute of Technology	Injection in Rodents Using Microneedles
2	Caroline Hamric	University of Florida	Evaluating the Role of Fetal Decm on Macrophage Polarization in 2D
Group 07	Food, Pharmaceutical	& Biotechnology III	
1	Shay Ladd	Michigan State University	Modeling the Impact of Cerebrospinal Fluid Flow on Waste Clearance in the Brain
2	Kiana Ramirez	Rowan University	Using Predictive Analytics for Diagnosis of Patients with Irritable Bowel Syndrome
Group 08	Fuel, Petrochemical &	Energy I	
1	Sasha Neefe	Lafayette College	Interesterification of Vegetable Oils Using Ferric Sulfate: Biodiesel Yield and Cloud Point Analysis.
2	Marissa Martine	Rowan University	Optimizing Pipeline Flushing Processes for Efficient Lube Oil Blending and Packaging Operations
Group 09	Fuel, Petrochemical &	Energy II	
Group 09 1	Fuel, Petrochemical & Sarah Ben-Yoseph	Energy II Georgia Institute of Technology	A Zinc-Based Alloy Anode Approach for Suppressing Hydrogen Evolution in Aqueous
			A Zinc-Based Alloy Anode Approach for Suppressing Hydrogen Evolution in Aqueous Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High- Rate Capacity for Aluminum-Graphite Batteries
1	Sarah Ben-Yoseph Joseph McManus	Georgia Institute of Technology City College of New York	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High-
1	Sarah Ben-Yoseph	Georgia Institute of Technology City College of New York	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High- Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic
1 2 Group 10	Sarah Ben-Yoseph Joseph McManus Materials Engineering	Georgia Institute of Technology City College of New York & Sciences I	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High-Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous
1 2 Group 10 1 2	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High- Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows
1 2 Group 10 1 2 Group 11	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing Materials Engineering	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles & Sciences II	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High-Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous
1 2 Group 10 1 2 Group 11 1	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing Materials Engineering Nicholas Sbalbi	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles & Sciences II University of Massachusetts - Amherst	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High-Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous Electrode Theory Structural Characterization of Nematic Colloids at Liquid Crystal-Air Interfaces Prepared Via Photopolymerization Predicting Ligand Removal Energetics in Thiolate-Protected Nanoclusters from
1 2 Group 10 1 2 Group 11	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing Materials Engineering	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles & Sciences II	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High- Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous Electrode Theory Structural Characterization of Nematic Colloids at Liquid Crystal-Air Interfaces Prepared Via Photopolymerization
1 2 Group 10 1 2 Group 11 1 2 Group 12	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing Materials Engineering Nicholas Sbalbi Julia McKay Materials Engineering	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles & Sciences II University of Massachusetts - Amherst University of Pittsburgh & Sciences III	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High-Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous Electrode Theory Structural Characterization of Nematic Colloids at Liquid Crystal-Air Interfaces Prepared Via Photopolymerization Predicting Ligand Removal Energetics in Thiolate-Protected Nanoclusters from Molecular Complexes
1 2 Group 10 1 2 Group 11 1 2 Group 12 1	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing Materials Engineering Nicholas Sbalbi Julia McKay Materials Engineering Uma Kokilepersaud	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles & Sciences II University of Massachusetts - Amherst University of Pittsburgh & Sciences III University of Maryland	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High-Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous Electrode Theory Structural Characterization of Nematic Colloids at Liquid Crystal-Air Interfaces Prepared Via Photopolymerization Predicting Ligand Removal Energetics in Thiolate-Protected Nanoclusters from
1 2 Group 10 1 2 Group 11 1 2 Group 12	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing Materials Engineering Nicholas Sbalbi Julia McKay Materials Engineering	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles & Sciences II University of Massachusetts - Amherst University of Pittsburgh & Sciences III	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High- Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous Electrode Theory Structural Characterization of Nematic Colloids at Liquid Crystal-Air Interfaces Prepared Via Photopolymerization Predicting Ligand Removal Energetics in Thiolate-Protected Nanoclusters from Molecular Complexes Electroadhesion of Polyelectrolyte Hydrogels to Plant Tissue
1 2 Group 10 1 2 Group 11 1 2 Group 12 1	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing Materials Engineering Nicholas Sbalbi Julia McKay Materials Engineering Uma Kokilepersaud	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles & Sciences II University of Massachusetts - Amherst University of Pittsburgh & Sciences III University of Maryland University of Texas - Austin	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High-Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous Electrode Theory Structural Characterization of Nematic Colloids at Liquid Crystal-Air Interfaces Prepared Via Photopolymerization Predicting Ligand Removal Energetics in Thiolate-Protected Nanoclusters from Molecular Complexes Electroadhesion of Polyelectrolyte Hydrogels to Plant Tissue Quantitatively Investigating the Relationship between Rheology of Polymer Solutions and Their Resulting Membrane Morphology.
1 2 Group 10 1 2 Group 11 1 2 Group 12 1 2	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing Materials Engineering Nicholas Sbalbi Julia McKay Materials Engineering Uma Kokilepersaud Matthew Santoso Materials Engineering	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles & Sciences II University of Massachusetts - Amherst University of Pittsburgh & Sciences III University of Maryland University of Texas - Austin	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High-Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous Electrode Theory Structural Characterization of Nematic Colloids at Liquid Crystal-Air Interfaces Prepared Via Photopolymerization Predicting Ligand Removal Energetics in Thiolate-Protected Nanoclusters from Molecular Complexes Electroadhesion of Polyelectrolyte Hydrogels to Plant Tissue Quantitatively Investigating the Relationship between Rheology of Polymer Solutions and Their Resulting Membrane Morphology. Molecular Dynamics Simulations of Polypeptoids Reveal the Effects of Chemistry and Topology on Local Water Behavior
1 2 Group 10 1 2 Group 11 2 Group 12 1 2 Group 13	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing Materials Engineering Nicholas Sbalbi Julia McKay Materials Engineering Uma Kokilepersaud Matthew Santoso Materials Engineering	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles & Sciences II University of Massachusetts - Amherst University of Pittsburgh & Sciences III University of Maryland University of Texas - Austin & Sciences IV	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High-Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous Electrode Theory Structural Characterization of Nematic Colloids at Liquid Crystal-Air Interfaces Prepared Via Photopolymerization Predicting Ligand Removal Energetics in Thiolate-Protected Nanoclusters from Molecular Complexes Electroadhesion of Polyelectrolyte Hydrogels to Plant Tissue Quantitatively Investigating the Relationship between Rheology of Polymer Solutions and Their Resulting Membrane Morphology. Molecular Dynamics Simulations of Polypeptoids Reveal the Effects of Chemistry and
1 2 Group 10 1 2 Group 11 1 2 Group 12 1 2 Group 13 1	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing Materials Engineering Nicholas Sbalbi Julia McKay Materials Engineering Uma Kokilepersaud Matthew Santoso Materials Engineering Daniela Rivera-Mirabal	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles & Sciences II University of Massachusetts - Amherst University of Pittsburgh & Sciences III University of Maryland University of Texas - Austin & Sciences IV University of Puerto Rico - Mayaguez	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High-Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous Electrode Theory Structural Characterization of Nematic Colloids at Liquid Crystal-Air Interfaces Prepared Via Photopolymerization Predicting Ligand Removal Energetics in Thiolate-Protected Nanoclusters from Molecular Complexes Electroadhesion of Polyelectrolyte Hydrogels to Plant Tissue Quantitatively Investigating the Relationship between Rheology of Polymer Solutions and Their Resulting Membrane Morphology. Molecular Dynamics Simulations of Polypeptoids Reveal the Effects of Chemistry and Topology on Local Water Behavior Zero-Powered, Non-Invasive, Long-Term Sweat Sampling By Biomimetic Osmotic
1 2 Group 10 1 2 Group 11 1 2 Group 12 1 2 Group 13 1 2	Sarah Ben-Yoseph Joseph McManus Materials Engineering Josephine Surel Brandan Taing Materials Engineering Nicholas Sbalbi Julia McKay Materials Engineering Uma Kokilepersaud Matthew Santoso Materials Engineering Daniela Rivera-Mirabal Jennifer Fang	Georgia Institute of Technology City College of New York & Sciences I Hope College University of California - Los Angeles & Sciences II University of Massachusetts - Amherst University of Pittsburgh & Sciences III University of Maryland University of Texas - Austin & Sciences IV University of Puerto Rico - Mayaguez	Battery Anodes Synthesis of Exfoliated Graphite Cathodes with Improved Ionic Conductivity and High-Rate Capacity for Aluminum-Graphite Batteries Exploring Halide Perovskite Structural Tunability to Design Materials for Dynamic Photovoltaic Windows Simulation of Battery Cycling of Different Electrode Architectures Using Porous Electrode Theory Structural Characterization of Nematic Colloids at Liquid Crystal-Air Interfaces Prepared Via Photopolymerization Predicting Ligand Removal Energetics in Thiolate-Protected Nanoclusters from Molecular Complexes Electroadhesion of Polyelectrolyte Hydrogels to Plant Tissue Quantitatively Investigating the Relationship between Rheology of Polymer Solutions and Their Resulting Membrane Morphology. Molecular Dynamics Simulations of Polypeptoids Reveal the Effects of Chemistry and Topology on Local Water Behavior Zero-Powered, Non-Invasive, Long-Term Sweat Sampling By Biomimetic Osmotic