

Critical Materials Institute

Microbial Mediated Recovery of Recycled Rare Earth Elements

David W. Reed, INL

Importance

REE are critical to energy and national security

- Lanthanides (include Sc & Y)
- Rare Earths are used in batteries, magnets, light phosphors, catalysts, abrasives, etc.
- Anticipated shortfall in HREE supply from China in next 10-15 years
- Demand for REE to increase
- New domestic sources are limited
- Waste streams are a major source of REE

Increase and diversify supply, increase efficiency of processing, develop substitutes, reuse and recycle materials

Critical Materials Institute

Challenges

- Recovery of metals from recyclable and waste materials involve intense temperature, pressure and harsh chemical multi-step processes
 - Leaching of metals from urban wastes have high energy/capital costs, high CO₂ emissions, low efficiency of extraction, other environmental impacts and associated health hazards.

Our challenge is to develop clean, efficient, and low cost processes for REE extraction

Why Microbes?

> Biological factories

- Advantages of developing a microbial process:
 - Historical biomining (Cu, Au, Zn, Co, U)
 - Catalysis (dissolution kinetics)
 - Resilient and adaptable (pH/temperature tolerant, metal resistant)
 - Spatially specific (penetrate, biofilms)
 - Resourceful (efficient and specific)

A microbial mediated process can facilitate REE extraction from recyclable materials

Critical Materials Institute

Bioextraction Process

A microbiological approach can be integrated into various stages of the REE extraction process

Microorganisms can be used for leaching and recovery of REE, removal of non-REEs, and selection of REE

Collection

> Bioleaching microbes

- Microbes adapted to low pH, high temperature
 - Acidic hot springs
 - YNP Norris Geyser Basin
- Microbes adapted to alter REE solubility
 - Bull Hill rare earth mine
 - Blackfoot Bridge phosphate mine
 - AERC phosphor powders

Collecting samples at Frying Pan Springs, YNP 84°C pH 2.2

Blackfoot Bridge

phosphate seam (dark)

Collected microorganisms from environments where REE dissolution characteristics may be evident

Enrichment

> Organisms for dissolution

- Enriched for microorganisms
 - Mineral acid production
 Autotrophs (sulfur oxidizers)
 - Organic acid production

 Heterotrophs (glucose)

Enriched acid producing microorganisms with potential for solubilizing or concentrating REE materials from wastes

Microbial Isolation

Phosphor solubilizers

- Evaluated activity
 - Acid production (pH, HPLC)
 - Phosphate solubility (CaPO₄ clearing)

Isolated acid producing, phosphate solubilizing microbes

Organic Acid Production

Primary organic acids produced were citric, gluconic, succinic

REE Dissolution

Phosphor, catalyst, oxides

- Preliminary screening results after 14 days:
 - Lamp phosphor reactivity
 - >10 mM Gluconic/citric acid, pH 3,(1% (Y, Eu))
 - BH24—Pseudomonas
 - Fluid cracking catalyst reactivity ○ >10 mM Citric acid, pH 3,(3% (La, Ce)
 - o BB46—Pseudomonas
 - REE-oxide reactivity ○ >30 mM Gluconic acid, pH 6, (>10% (Y, Eu) ○ A1—Penicillium

Isolated microorganisms capable of REE dissolution; similar to those with potential leaching/adsorption capabilities

Biological Process for REE Recovery

Significance

CMI and INL are advancing the DOE mission by developing biological capabilities for sustainable processing of valuable REE resources

- ✓ Reduce dependence on foreign REE sources
- ✓ Lower environmental hazards
- ✓ Reduce wastes

✓ Build a sustainable bio-based economy

Acknowledgments

 Critical Materials Institute (AMES)
 Advanced Manufacturing Office of the Department of Energy's Energy Efficiency and Renewable Energy program

> LLNL

- Yongqin Jiao
- Mimi Yung

> INL

- Debby Bruhn
- Dayna Daubaras
- Vicki Thompson
- Joni Barnes
- Francisco Roberto (Newmont)
- Jennalee Reiss (BYU-Idaho)

