

Recovery of Clean Water and Metals from Mining Wastewater and solutions using Nanofiltration membranes

Tracy Young Associate R&D Director, Growth Technologies

Peter Aerts Growth Technology Leader, Specialty Membranes

248th National ACS Meeting, San Francisco, CA August 12, 2014

Water is critical to all Mining operations

Source: Adapted from Freeport-McMoRan Copper & Gold Inc, SRI Consulting, Various Other Dow

Dow Water & Process Solutions: At a Glance

Our Strategy is to be the performance leader in applying differentiated technology and expertise to solve our customers' most challenging separation and purification problems.

Global Innovation Leader in Reverse
 Osmosis and Ion Exchange

• Our technologies process over 15 million gallons of water per minute globally

\$1B 1900 REVENUE EMPLOYEES

STATE OF THE ART R&D CENTERS USA I SAUDI ARABIA I CHINA I SPAIN

ALIGNED WITH 4 MEGATRENDS water I energy I HEALTH/WELLNESS I URBANIZATION

Water & Separation Technologies

Microfiltration Pore size: >0.05 PSI: 15 - 60

Ultrafiltration Pore size: up to 0.05 PSI: 5 to 30

Nanofiltration Pore size: .001 PSI: 90 - 150

Reverse Osmosis Ion Exchange Resins Pore size: PSI: 75 to 1000

Pore size: PSI: 50

Filters High Molecular **Weight Species**

Sand, silt, clays, giarida, algae, some bacteria, pre-treatment

Macromolecules

All microbiological species, some viruses and humic materials

Filters

Filters Small **Molecules**

Virtually all bacteria, viruses, cysts, humic materials, removes alkalinity and H₂O hardness

Removes Salts, Ions, Color, LMW **Species**

Nearly all inorganic contaminants, as well as radium, pesticides, cysts, bacteria and viruses

Purifies and Changes

Further removes metal ions and mineral content to soften the water or improve its purification. Changes water characteristics.

'Mechanical" Water Treatment Under Pressure

"Chemical" Treatment at Molecular Level

Ion Exchange Resins Metal Recovery and Extraction

Product	Functionality	Description
AMBERLITE IRA743	N-Methyl Glucamine	Boron removal
DOWEX 21K XLT	SBA-Type 1	600µm uniform particle size, high capacity resin for uranium, gold ,zinc, and Pt
AMBERLITE IRC748	IDA	Chelating resin for metals removal
DOWEX M4195	Bis-PIC	Chelating resin for Copper, Nickel, and Cobalt processing.
DOWEX XUS43578	Bis-PIC	410µm uniform chelating resin for Copper, Nickel, and Cobalt processing.
DOWEX XUS43600	Thiouronium	Special resin for recovery of Platinum Metals (PGM's).
DOWEX XUS43604	Thiol	Mercury Removal
DOWEX XUS43605	НРРА	Cu selectivy at low pH in the presence of Fe
DOWEX XZ 91419	N-Butyl-Amina	Large bead, gold selective strong base anion resin with t-Butylamine groups for recovery of gold from cyanidation leach solutions (manufactured under license from MINTEK)

Mining Industry trends impacting Water treatment needs

are driving demand for Desalination Projects to supply Mining sites Water Scarcity and tougher regulations are driving demand for efficient water use/reuse

Higher Commodity prices and lower ore grades are driving recovery of metals from tailings and other waste streams

Increasing awareness of environmental impact from mining sites and stricter regulations are driving demand for Acid Rock Drainage solutions Use of advanced technologies is creating needs for salt disposal solutions due to regulations and costs

Mining water and wastewater treatment

Drivers for membrane adoption Technical

- Recovery of metals
- Recovery of clean water
- Improve mining process
- Sludge generation reduction and/or elimination
- Metal fractionation

Environmental

- Meet waste water discharge requirements
- Dam / Tailings treatment
- Avoiding fines for noncomplianceSocial
- Maintain license to Operate
- Share delicate resource: water

Figure 3. Mining water and wastewater market revenue forecast by segment (2011-2016)

Case Study *Acid Mine Drainage water treatment utilizing Nanofiltration membranes*

Acid Mine/Rock Drainage

Source: GARD Guide, 2011

Figure 1.33 Types of drainage produced by sulphide oxidation

Acid rock drainage Neutral mit		al mine drainage	Saline drainage		
Acidic pH (2-6)	dic pH (2-6) Near neutral to alkaline pH (Neutral to alkaline pH (7-10)		
Moderate to elevated metals		o moderate metals (may have	Low metals, may have moderate iron		
Elevated sulphate		ted zinc, cadmium, manganese, iony, arsenic or selenium)	Moderate sulphate, magnesium and		
Treat for acid neutralisation,		o moderate sulphate	calcium		
metal and sulphate removal		for metal and sometimes ate removal	Treat for sulphate and sometimes meta removal		
Sources - Tailings - Waste rock stockpiles - Ore and low-grade ore st - Heap leach materials - Pit walls - Underground workings	ockpiles	Pathways - Runoff - Infiltration through mine waste - Infiltration through soil/vadose zone - Groundwater - Surface water - Uptake by biota	Receiving environment - Groundwater - Surface water - Air - Soil - Sediment		
Dow		- Movement of mone waters - Air			

Case Study – the challenge

Water Challenge

- Removal of MnSO₄ from AMD to comply with local legislation (CONAMA 430/11)
- Meet discharge limit of Mn < 1 mg/L

Brazil Uranium Mine

- Situation: Clean-up (15 years operation)
- Liquid Effluent Treatment still active

Tailings Dam

- Exhausted
- Direct release to water source unacceptable
- · Needed to adopt to meet local Legislation
- High level Ca(OH)₂ to precipitate sulfate
- High Level of Sulfur (pyrite Fe S₂)
- High Level of Manganese

Case Study – 6 month pilot trial

Define membrane performance to determine long term operation and economics

- Evaluate specific membrane characteristics (targeted recoveries, fouling & scaling in harsh waters)
- Operational parameters for long term performance (pretreatment, cleaning protocol, antiscalant, etc)
- Economic analysis vs. traditional treatment

Configuration	1 stage, single pass
Vessels	Codeline 8"
Elements /Vessel	1
Type of Element	Polyamide NF
Manufacturer	Dow FILMTEC [™]
Model	XUS 229323
Feed Water	AMD, 1500 mS/cm at 25°C
PreTreatment	Dual Media Filter + Cartridge Filter
Typical RO Feed	SDI <3
RO Recovery	9% (Avg/element)
Feed Capacity/Unit	10 m3/hr

Case Study – *performance results*

Delivered desired Sulfate & Manganese removal level to meet discharge limits (<1 mg/l).
Excellent removal of all rare earth elements to greater than 95%, except Uranium at 87%

Feed Water Composition

Date		10-jan	18-jan	25-jan	1-feb	8-feb	14-feb	23-mei	13-jun	Average
pН		3,36	3,56	3,52	3,56	3,66	3,54	3,55	3,65	3,53
FEM	mV	501,8	532,4	514,2	547,5	501,4	561,6	561,8	566,9	519,5
Condutividade	µS/cm	1.717	1.455	1.413	1.569	1.485	1.502	1621	1541	1.528
U	mg/L	5,82	9,6	6,95	8,7	8,26	8,49	7,01	6,41	7,87
Mn	mg/L	61,4	95,3	73,1	87,3	85,3	85	104	86	80,5
SO4 ²⁻	mg/L	1.298	1.158	1.075	1.001	991	973	1098	1072	1.105
Fe	mg/L	3,863	1,2	0,46	0,703	0,307	0,79	0,73	0,28	1,31
Ca	mg/L	242,2	100,3	85,3	94,6	87,7	87,5	112	86,6	122,0
Mg	mg/L	9,27	8,02	6,49	7,73	7,55	7,41	9,23	7,62	7,81
Si	mg/L	11,3	11,45	14,2	16,3	14	12,4	NA	NA	13,45
AI	mg/L	122,3	189	132	160	179	149	182	170	156
Na	mg/L	1,5	1,8	1,7	1,9	NA	NA	NA	NA	1,7
К	mg/L	8,6	9,4	8,7	8,4	NA	NA	NA	NA	8,8
CI.	mg/L	0,45	NA	NA	NA	NA	NA	NA	NA	0,45
F-	mg/L	NA	NA	87,7	93,3	111	106	154	141	110,4
NO ₃	mg/L	0,5	NA	NA	NA	NA	NA	NA	NA	0,50
Zn	mg/L	NA	NA	NA	13,9	13,6	13,4	NA	NA	13,8
Мо	mg/L	NA	NA	NA	0,94	0,9	0,87	NA	NA	0,92
La	mg/L	39,3	51,8	40,6	50,4	49,9	48,8	NA	NA	47,4
Ce	mg/L	23,39	27,5	24,3	27,1	27,4	26,4	NA	NA	26,2
Pr	mg/L	2,55	3,02	9,56	8,29	9,14	9	NA	NA	7,32
Nd	mg/L	8,57	11,4	9,7	12,2	11,7	11,4	NA	NA	11,0
Sm	mg/L	1,21	1,6	1,06	1,3	1,29	1,24	NA	NA	1,29
Y	mg/L	3,53	5,39	4,42	5,37	5,3	5,12	6,23	5,11	5,05

Specie	Average Removal ± RSD / %			
Manganese	98,8 ± 0,7 (n =45)			
Fluoride	98,1 ± 0,8 (n = 55)			
Sulfate	95,1 ± 0,5 (n = 48)			
Zinc	98,1 ± 0,1 (n =3)			
Calcium	97,9 ± 1,9 (n=8)			
Aluminium	99,1 ± 0,5 (n =8)			
Uranium	87,0 ± 5,0 (n =45)			

AMD Ion Removal

AMD Rare Earth Recovery

Specie	Average Removal ± RSD / %			
Lanthanum	99,5 ± 0,2 (n= 6)			
Cerium	99,5 ± 0,2 (n=6)			
Praseodymium	96,7 ± 0,2 (n=5)			
Neodymium	99,4 ± 0,2 (n=6)			
Samarium	98,4 ± 0,1 (n=6)			
Yttrium	99,4 ± 0,3 (n=7)			

Case Study – membrane surface results

Membrane Autopsy

• ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry) was applied to the membrane to identify what element would have more probability to scale in the membrane

• Aluminum and Iron were the most prevalent metals with the most precipitation, but not at levels which intruded membrane performance

Membrane Cleaning

- Ten CIP's conducted over 2000 hours
- Oxalic acid cleaning followed by caustic soda yielded the best results

Extract of autopsied membrane

Element	mg/L	Element	mg/L
Ni	0,145	U	4,88
Cu	0,06	Mn	2,78
Zn	3,34	SO42-	127
Mo	<0,004	Fe	12,5
Cd Ba	0,015 0,134	Са	6,1
Y	<0,004	Mg	2,94
La	0,7	Ρ	1,27
Ce	0,48	AI	46,7
Nd	0,23	Ti	0,43
Sm	0,03	V	0,01
Gd	0,02	Cr	0,2725

Case Study – conclusion

Acid Mine Drainage waters with high contamination can be cost effectively treated with tailored nanofiltration membranes with optimized operation protocols and the appropriate system design.

- Reduced sulfate, manganese, and fluorine to generate permeate flow to meet local regulatory levels for disposal and or reuse (<1 mg/l Mn)
- Delivered excellent recovery of all elements as rare earths
- With proper pre-treatment and operational protocols, the lifetime of nanofiltration membranes in harsh waters can be achieved (robust, easy to clean, low fouling)
- Nanofiltration membranes have a lower footprint and can achieve a lower OPEX vs. physical chemical treatment

Mining separation -- challenges & adoption

Unique Sites require Breadth of Capabilities to develop Unique Solutions

 Water Challenges and Mining Processes vary significantly depending on the mineral being processed and the stage where water is being considered

ge • 1 se

Every mine is unique in geology, water chemistry, etc
This requires that each mine separation solution needs to be defined holistically

Mining separation - challenges & innovation

Innovations addressing material challenges will enable separations in increasingly harsh environments with longer membrane lifetimes

- Exposure to acid/base limits product lifetime PA-based RO/NF membranes are susceptible to degradation
- Exposure to solvents impairs performance Conventional RO/NF/UF membranes swell

Source: ACS Separation Science and Technology (SST) as the Convergence Platform for *SusChEM*,

A few examples....Mining Commercial applications

Site / Year	Capacity m3/day	Scope	Application
Longyu Coal mine , China	5.278	UF & RO	Boiler make up from coal waste water
GoldFields Ghana, 2013	2 x 7.500	UF&RO	Gold mine waste water
Anglo American Thermal Coal, New Vaal Colliery, Free State, SA.	20.000	UF&RO	Coal mine waste water treatment
Minera Collahuasi, Chile ; 2002		UF&RO	Make up water for copper mine
Minera Escondido, Chile, 2006	45.000	UF&RO	Make up water for copper mine
Mining Mantoverde, 2012	10.400 (expansion to 26.000 m3/day)	UF&RO	Make up water for copper mine
Gold mine; Yanacocha, Peru	72.000	RO	Barren leach recovery of cyanide and metals
Cananea Mexico, 1997	24.000	NF	PLS preconcentration and removal of excess wastewater
Kennecott Copper (Rio Tinto) 1998	12.000	UF&RO	ARD wastewater treatment
Zijin Copper mine, Xiamen, China; 2009;	6000	UF&RO	ARD wastewater treatment

Summary

- Nanofiltration membranes have been proven to deliver cost effective performance within Acid Mine Drainage and Mining water management today.
- Adoption & Innovation will foster new solutions
- Membrane technology has intrinsic advantages vs. alternative separation technologies to meet even broader purification and separation challenges
 - Critical Materials & Mining waste water and metals recovery
 - Novel chemistries will be needed to meet material performance challenges to enable separations in these increasingly difficult environments

Thank You

Nanofiltration / Reverse Osmosis

