SIMBOL Materials

Sustainable Extraction of Valuable Elements

John L Burba, PhD

President and CEO, Simbol Materials

© 2013 Simbol, Inc.

I. Characteristics of Sustainable Metals Recovery Operation

- A. Favorable Resource
- B. Process Selection and Design
- II. Simbol's Salton Sea Lithium Recovery Project
 - A. Imperial Valley Brine Resource
 - B. Simbol's Lithium Extraction Process
 - C. Future Extraction of Manganese, Zinc, and Potassium

Resource Selection: The resource will make the project. High elemental concentration is not enough.

- Key considerations include
 - Location
 - Accessibility
 - Country risk
 - Resource Type; solid mineral or solution
 - Recovery: surface/ subsurface, or solution mining
 - The global recovery process
 - Mining considerations
 - > Separation chemistry and process
 - > Process inputs such as energy, water and chemicals
 - > Key infrastructure such as roads, power, water
 - Environmental Considerations
 - Surface disturbance such as open pits
 - Waste rock piles, tailings piles
 - Waste Salt piles
 - > Waste water and rain water run off control and treatment
 - > Acidic mine water drainage
 - > Air emissions, including CO₂, NOX, SOX, and dust
 - Permitting

Process Selection: Once the resource has been identified, process chemistry drives everything.

- Key drivers for a successful process:
 - Hydrometallurgical processes for mineral concentration and dissolution
 - Chemical separation and concentration processes
 - > Total chemical inputs
 - Energy requirements and cost
 - Water requirements and management, including waste water, and impacted ground water
 - Mine waste production and management
 - RCRA and non-RCRA waste production and management
 - > Air emissions

Resource

- Minimal mining
- High concentrations of desired elements, minimal concentrations of difficult impurities
- Minimal hydrometallurgical processing
- High efficiency extraction and separation processes
- Fully developed infrastructure
- Low cost energy
- Access to motivated and skilled labor
- Process
 - Highly selective and efficient separation and recovery technology
 - Minimal chemical inputs
 - Minimal waste water

Company Overview – Simbol Materials

- Access to one of the largest untapped resource of lithium, manganese, zinc and potassium
- Proprietary extraction technologies provide low cost operations with minimal environmental impact
- Patent protected technology
- Management team with deep expertise in the targeted businesses, technology, operations and project management.

Resource: Unique geology has created an abundant source of lithium, manganese, zinc and potassium

- The Salton Sea Geothermal Field lies within the Imperial Valley and contains hot hypersaline metalliferous brines
- Magmatism from continental rifting generates high heat flow and is causing the Valley to subside
- The Colorado River filled the Valley with metal-rich sediments and created a closed-basin evaporative lake setting
- Incoming waters evaporated and deposited salts
- Hot water dissolved the salts, and leached metals from the sediments and created a pool of hypersaline brine in the subsurface
- Geothermal plants access this mineral rich resource to generate power

Metal-Rich Colorado River sediments

Recharging resource provides abundant and reliable brine supply

Potentially the Largest Lithium Resource in the World

- Within the 100 km² drilled out portion of the Salton Sea Field alone, total quantities of dissolved metal resources have been estimated at:⁽¹⁾
 - 10.6 million MT of lithium LCE
 - 15 million MT of manganese
 - 36 million MT of zinc (based on current zinc analyses)
- Total lithium resource potential estimated between 106 325 million MT LCE⁽²⁾
- Additionally, we estimate about 150 million MT of manganese oxide, 390 million MT of zinc oxide, and 5 billion MT of potassium chloride
- Assuming annual production rates of 15,000 MT of lithium carbonate, 21,222 MT of manganese and 50,943 MT of zinc, the brine metal depletion of the reservoir would only be 0.13% per year if no recharge occurred⁽¹⁾
- No evidence of significant geothermal resource, entrained gas concentration or metal concentration decline after 20 years of > 250 MW of geothermal power production

Source: Hulen, 2002.

(1)McKibben 2010, applicable to 100km^2 drilled out portion.

(2) 106 million MT LCE extrapolated from McKibben 2010 estimate for drilled-out area. 325 million MT LCE based on Simbol extrapolation of GeothermEx [2008] estimate of a 3km thickness.

Imperial Valley Brine Offers Significant Advantages for Mineral Extraction

- Low operating cost
 - High elemental concentrations, Li, Mn, Zn, K
 - Desired elements are available in solution, ready for chemical processing
 - No mine development
 - No mining
 - No ore processing
 - No hydrometallurgical extraction
- Negligible Environmental Foot Print
 - Depleted brine is returned deep into the geothermal formation, eliminating
 - Tailings ponds
 - Salt piles
 - Mine closure and remediation costs
- Low Country Risk
- Excellent Transportation Logistics
 - Interstate highway system
 - Rail
 - Easy access to California ports

- 1. Brine is delivered from an associated power plant
- 2. Brine is purified to selectively remove high concentrations of silica and iron
 - The recovered solids can be packaged and sold, paying for the purification process
- 3. Selective Adsorption (SA) Process for Lithium Recovery and Purification
 - The SA process extracts LiCl from hot brine into a lithium aluminate crystalline matrix. When the crystal is saturated, it is regenerated by flushing it with water.
 - This process is quite efficient. In one process step, it recovers > 95% of the lithium from the brine. It increases the lithium concentration by a factor of 12, and it rejects over 99% of the unwanted cations, greatly simplifying down stream purification.
- 4. The lithium depleted brine is returned to the power plant for reinjection into the geothermal resource

- The SA product is purified and concentrated to a 42% LiCl liquor, recovering about 75% of the water, and producing 99.995% pure LiCl, on a dry LiCl basis
- 6. The purified lithium chloride is sent through an electrolysis unit that produces lithium hydroxide solution and hydrochloric acid (32%, ready for sale)
- 7. A portion of the lithium hydroxide is crystalized to $LiOH H_2O$. CO_2 is sparged through the rest to produce Li_2CO_3 . These compounds will be our primary products for sale.

Sustainability– A sustainable process must meet its environmental and financial objectives

The combination of the Imperial Valley Geothermal Brine and Simbol's proprietary process will produce:

- Minimal land disturbance and environmental impact
- Efficient use of the geothermal resources for power and heat minimize the carbon foot print and reduce energy cost
- Very low chemical inputs. Most of the process chemical demands are generated within the process
- Due to efficient internal use of dilute salt streams, the process will produce no waste water or waste solid streams
- Efficient selective recovery of lithium to produce high purity products at low cost