

Rail Car Unloading Case Study

Hazard Identification and Risk Analysis using RAST

Version: 1.0 Revision Date: 13 September 2018 Document Owner: Louisa Nara, CCPS Global Technical Director

Process Description

Chlorine gas is liquefied by the application of pressure at reduced temperatures to form a clear, ambercolored liquid. Liquid chlorine (a liquefied compressed gas) is more economical to ship and store. Other than at large production facilities, liquid chlorine is typically stored and shipped in 150-pound cylinders, 1ton containers, or 55- and 90-ton tank cars. One volume of liquid chlorine, when vaporized, yields about 460 volumes of gas.

A chlorine repacking operation involves unloading liquid chlorine rail cars into smaller cylinders and totes. The chlorine repackaging process operation involves the following:

- Connecting a 90-ton (180,000 pounds) chlorine tank car to one of three unloading stations.
- Transferring liquid chlorine from the tank car through the process piping system to filling stations.
- Loading the filled 150-pound cylinders and 1-ton containers onto trucks for distribution.
- Cleaning and preparing empty cylinders and containers for reuse.

The chlorine repackaging process is a one-shift operation, typically running from 6:00 am to 4:00 pm, Monday through Friday. At the end of the day, a packager climbs the ladder to the top of the tank car and closes all car valves manually. Residual chlorine in the piping system is directed to the bleach production process. A vacuum is pulled and the system is left under negative pressure. The chlorine transfer hoses remain connected to the tank car overnight. Leak testing (by spraying small amounts of ammonia solution around possible leak points) is performed prior to startup the next day.

Equipment and Site Description

Railcars are typically 180,000 gallon capacity and rated for 375 psig. They are equipped with 1 inch diameter unloading hoses and automated shut off valves.

The site is located 35 miles south of downtown St. Louis and 3 miles south of both the Festus and Crystal City town centers. Festus and Crystal City have a combined population of 14,000. Nearly 1,500 people live and work within a 1-mile radius of the site. Approximately 200 people live in a mobile home park directly adjacent and southwest of the site (approximately 500 ft from the rail car unloading area). The area beyond the mobile home park (2500 ft away) is sparsely populated. Goodwin Brothers Construction and Intermodal Tire Retreading are located about 100 feet to the east (approximately 500 ft from the rail car

unloading area) separated from the site by Highway 61. Each business has about 18 full-time employees. Interstate 55 is 0.5 miles to the east.

Inputs for RAST

Chemical data for the materials used in this example is in the RAST chemical database as provided from CCPS. The RAST chemical data input sheets for chlorine are shown below. An operating pressure of 8 bar has been entered to ensure the physical state is liquid at an ambient temperature of 25 C.

												turation
<< Go To Main Menu			<u>Che</u>	mical Data	Input		Temper	ature <	Operati	ng Ten	nperatu	ıre)
Enter New Chemical		All Local	ta Englandaria	Table	Clear Inpu			Go To Proces	s Conditions >	7		
		Save All Input	to Equipment	Table	Clear Inpu	u.		Go To	Plant Layout > /	/		
				_								
	nt Identification:			Enter Equipment Ide	ntification and		Temperature =	25	C			
E	quipment Type:	0.11		Equipment Type on : Worksheet	Study Menu		ressure (gauge) =		bar			
	Location:	Outdoor Assum	ea	1			Temperature = Physical State =	30.4 Liqu	C			
	Key Chemical:	Chlorine			Reference:		Filysical State =	Liq	лd			
	ical Comments:											
Reg. Agency C	onsiders Toxic?											
							1					
Chemicals (the first chemical chemical)	I listed is the 'key'	Wt Fraction Feed	Second Liq Phase	Wt Fraction Vapor	Relative Volatility	Molecular Weight	ERPG-2 (ppm)	ERPG-3 (ppm)	LFL (vol %)			
Chlorine		1.000	Phase	1.000	1.0000	70.91	3	20				
Chionne		1.000		1.000	1.0000	70.91	3	20				
	Sum =	1.00]	Vapor Mix	ture Properties:	70.9	3.0	20.0				
M	xture azeotrope?	No	1		r		Mixture					
IVIL	Ature azeotrope :	NO			Mixture P	Properties	Estimates	User Values				
				_		Melting Point =	-101		deg C			
Standard Mixture (the key of		Wt Fraction	Second Liq			Flash Point =			deg C			
defined as a mixt	ture)	Feed	Phase			e Flash Point =						
						tained Burning"? Temperature =			deg C			
						ase of Ignition =			ueg c			
						uel Reactivity =						
						ermal Toxicity =						
						quatic Toxicity =						
Model as a single Pse	udo-Chemical?		1			Viscous Materia Flammability =	0					
moder as a single FSC	aus-onemical f					NFPA Health =	4					
					Reacti	ivity Category =						
	ary of Chemical		_	-		PA Reactivity =	0					
	ed Boiling Point =	-34.0	C		Liquid	d Conductivity =	Non-Conductive		1			
Vapor Pressure at O Liquid Density at O		7.709	atm gm/ml			Due	t Characteris	tics				
Liq Heat Capaci		0.25	-		Dust/Solids	Hazard Class =						
Liq Heat Capacity	at Boiling Point =	0.22	cal/gm C			n Particle Size =			micron			
Heat of Vaporization		60	cal/gm		Particle Size at				micron			
Heat of Vaporization Boiling Point at Relief		69 79.5	C			gnition Energy =			mJoule			
	Burst Pressure =	79.5 119.4	Ċ			mmable hybrid?	ter (>10 lb/ft 3)?					
				74.0				101.0				
From the above va	por composition:	Estima	ated 1 hour LC 1	74.3	ppm	Estima	ated 1 hour LC 50	404.3	ppm			
		Na	me	State	Mol Weight	ERPG-2 (ppm)	ERPG-3 (ppm)	LFL (vol %)	Flash Pt (C)			
	Gas Properties			Vapor	29							
Hea	t Transfer Fluid											
Show Chemical Details	Hide Chemical De	etails										

Equipment Data Entry is entered on the Equipment Input worksheet. Note that there are few required fields and information may be added later to improve results. Relief device information has not yet been entered.

Since the rail cars are used for unloading only, the feed rate is entered as zero. If it were possible to back flow from the process into the rail car, a backflow rate would be entered to evaluate an overfill situation.

<< Go To Main Menu	<u> </u>	Process Co	ondition	<u>s Input</u>	Go To	Go To Plant Layout >			
< Go To Chemical Data	Save Input to Equipment Ta			Clear Input	Go To	Go To Reaction Input >			
< Go To Equipment Input				, <u> </u>					
Equipment Identifica				Process Description					
Equipment T Loca	tion: Outdoor Ass	sumed		The rail cars are only unloaded such that the maximum feed rate is zero.					
Process/Operatir	ng Conditions			Summary for	Chlorine				
Ambient Temperature =				Operating Temperature =	25	С			
Inventory Limit (blank is unlimited,) =	kg		Operating Pressure (gauge) =	8	bar			
Liquid Head within Equipment, ∆h	1 =	m		Physical State =	Li	quid			
Limiting Maximum Fill Fraction =				Saturation Temperature =	30.4	С			
Limiting Minimum Fill Fraction =				Contained Mass =	75461	kg			
Maximum Feed Press (gauge) =	:	bar		Maximum Contained Mass =	94326	kg			
Maximum Feed or Flow Rate =	0	kg/min		Inventory for Reference =	94326	kg			
Maximum Feed Temperature =		С							
Type of Feed (Batch or Continuou	is)								
Non-Ignitable Atmosphere Maintain	ed?								
Potential for Aerosol or Mist?				Operating Procedures					
Pad Gas Name =				Percent of Time in Operation =					
Max Pad Gas Pressure (gauge)=	:	bar		Frequent Turnaround or Cleanout?					
Maximum Pad Gas Rate =		kg/min		Centralized Ventilation Shut-Off Bldg 1?					
Downstream Pressure (gauge) =	:]	bar		Centralized Ventilation Shut-Off Bldg 2?					
Maximum Back Flow Rate =		kg/min							
Equipment Vents to =				Review of Operating Procedures for					
				Selected Equipment Item by:	Revie	ew Date:			
Jse Time-based Release for Equipment Rup	ture?		sec						

Plant and Site Layout information is entered on the Plant Layout worksheet. For this example, we have entered two offsite population regions with the mobile home park between 500 and 2500 ft. from the rail car unloading with a population of 200 people across roughly 10 acres (40000 m²) or 0.005 people/m² (densely populated). The area beyond the mobile home park is farmland assumed 0.0001 people/m². The airport is north at more than 5000 ft. away.

<< Go To Main Menu		<u>Plant Lay</u>	out l	nput	Go To Rea	action Input >			
< Go To Chemical Data Save Ir	Save Input to Equipment Tab			Clear Input	< Go To Proces	s Conditions			
< Go To Equipment Input									
Equipment Identification: C	hlorine Rail C	ar		Layout Description					
Equipment Type: Ta	ank Truck/Rai	il Car/Tote							
Location: O	Dutdoors								
Location Information				Occupied Buildi	ng Data				
Distance to Property Limit or Fence Line =	500	ft		Occupied Building 1 Name =	Intermodal T	ire			
Furthest Distance to Fence Line (> 152.4 m) =		m		Distance to Occupied Bldg 1 or Area =	500	ft			
Max. Onsite Outdoor Population Density		people/m ²		Elevation of Occ Bldg 1 Ventilation Inlet =		m			
Personnel Routinely in Immediate Area?				Distance to Center of Occupied Bldg 1 =		m			
Distance to end of Offsite Zone 1	2500	ft		Occupied Bldg Type =					
Offsite Population Density within Zone 1	0.005	people/m ²		Occupied Bldg Ventilation Rate =		changes/h			
Offsite Population Density Beyond Zone 1	0.0001	people/m ²		Number of Building Occupants =	18				
Effective Egress from Work Area?		· ·		Occ Bldg 2 in Same Wind Direction?	No				
Access for Emergency Services?				Occupied Building 2 Name =	Wil-Mix Con	crete			
Degree of Equipment Congestion in Area?				Distance to Occupied Bldg 2	2500	ft			
Containment or Dike Surface Area =		sq m		Elevation of Occ Bldg 2 Ventilation Inlet =		m			
Consider Dike or Bund Failure for Vessel Rupture?				Distance to Center of Occ Bldg2 =		m			
Credit Fire Heat Adsorption for Drainage/Indirect?				Occupied Bldg 2 Type =					
Distance to Nearest Fired Equipment =				Occupied Bldg 2 Ventilation Rate =		changes/h			
Quantity of "Other" Flammables in Immediate Area		kg		Number of Occupants Bldg 2 =	18				
Quantity of Flammables in Adjacent Area		kg							
Adjacent Containment or Dike Surface Area =		sq m							
Automated EBVs to limit spill quantity?				Environmental	Inputs				
				Spills to Soil Require Remediation?					
Enclosed Process Area Dat	ta			Potential for Water Contamination?					
Enclosed Process Volume =		cu m		High Population Downstream of Facility?					
Enclosed Process Ventilation =		changes/hr		Note that Environmental Sce	narios are Exclue	ded			
No. Enclosed Area Personnel =									

There is no reaction data input for this example.

Reports

Following entry of the input information, several reports may be run to summarize hazards and risks. A good report to start with is the **Hazard Summary**. Based on the input information, RAST suggests considering toxic hazards. A Process Hazard is also noted due to the low normal boiling point where frostbite may be a concern.

HAZARD SU RAST Vers			Date:
Summary of Chemical Information	for Process Unit	Tank Truck/F	Rail Car/Tote; Chlorine Rail Ca
Physical State at Operating Conditions for Chlorine = Liquid an			
Weight Fraction Chlorine	1		
Normal Boiling Point, C	-34.0	н	azard Screening
Flash Point, C	0110		hemical Information in Bold
Lower Flammable Limit at Initial Composition, vol %	0.0		
Combustible Dust?	No		
ERPG-2 at Initial Composition, ppm	3.0		
ERPG-3 at Initial Composition, ppm	20.0		
Dermal Toxicity Classification (or Corrosive to Human Tissue)		Toxicity Ha	zard Sufficient for Further
Aquatic Toxicity Classification			Consideration
Considered Toxic by a Regulatory Agency?	No		
Heat of Reaction, kJoule/kg			
Highly Volatile or Gaseous Products Generated?	No		
Potential for Mixing Incompatible Materials?	No		
Considered Condensed Phase Detonable?	No		uipment is Considered in
		Ha	azardous Service
		-	Pressure Exceeds Maximum
Summary of Equipment and Process Conditions	Temperature	Pressure	Allowable Working or Relief Set
Equipment or Vessel Volume 18000 gal	С	bar gauge	Praccura?
Normal Operating Constitution	07	0.00	, I
Normal Operating Conditions	25	8.00	-
Maximum Allowable Working or Relief Set Pressure	79.5 119.4	25.86 51.71	-
Catastrophic Failure/Burst Pressure Full Vacuum Rated? Not Entered	119.4	31.71	
Catastrophic Failure High Temperature	600.0		
Temperature where Low Temp Embrittlement may Occur?			
Maximum Feed Pressure		Not Entered	
Maximum Gas Pad Pressure		Not Entered	
Maximum Downstream Equipment Pressure		Not Entered	
Maximum from Liquid Displacement (based on 9 X compression or fe	ed pressure)	5.82	No
Estimated Maximum Headspace Deflagration Pressure			No
Maximum Pressure from Hydraulic Surge (Piping Only)			
Maximum Ambient Conditions	25	8.00	No
Maximum Feed Temperature			
Minimum Coolant Temperature			
Normal Boiling Point of Equipment Contents	-34.0		_
Maximum from Heating Media Temperature			
Estimated time to Relief Set Pressure or MAWP from Heat Transfer at Lo			
Estimated time to Relief Set Pressure or MAWP from Heat Transfer at Hi	gh Level, min	0.00	Na
Heating Media Source Pressure		0.00	No
Max from Mechanical Energy at Low Level: Non-Insulated Estimated time to Relief Set or MAWP from Mechanical Energy at Low Lu	u al min		-
Max from Mechanical Energy at High Level: Non-Insulated	evel, min		-
Estimated time to Relief Set or MAWP from Mechanical Energy at High L	evel min		-
Edinalda inte lo relici occor interna inon mechanica Energy actingite			Max. Temperature Exceeds High
			Temperature Failure
Maximum Temperature , C	25.0		No
· · · · · · · · · · · · · · · · · · ·			Min Temperature less than
			Embrittlement Temperature
Minimum Temperature, C	25		No
Potential for Uncontrolled Reaction	No		
Reaction Temperature of No Return is Greater than the Boiling Point at	Relief Set Pressure o	r MAWP or non-	
Reactive			
Exothermic Reaction Temperature of No Return			Pressure Exceeds Maximum
Maximum Departies based on Adiabatic and Initial	Townshing O	Pressure, barg	Allowable Working or Relief Set Pressure?
Maximum Reaction based on Adiabatic and Initial	Temperature, C		Set Pressure?
Temperature as Operating Temperature	25.0	8.90	
Max Reaction Temp Exceeds High Temperature Failure?			
Potential for Pool Fire	No		
Quantity Flammable Available based on Flammable in Area	0.0	ka	
Quantity Flammable Available based on Flammable in Area Maximum Pool Fire Duration based on Direct Fire	0.0	kg minutes	
Fire Heat Input per API 521 for Process Vessel or	0.0	Kwatt	
Equipment	0.0		

Another very useful report is the **Scenario List.** Deviations of common Parameters for unloading operations that could lead to an unintended loss of hazardous material or energy along with the most common causes are listed. The list also contains comments why the scenario was selected. Scenarios in gray were not selected. The comments may explain why which may indicate a missing input. This table provides a "starting point" for identifying scenarios to consider for Risk Analysis. Note that "Piping or Equipment Leak" caused by Unloading Hose Failure is one of the scenarios suggested for consideration.

<< Go To Main Mer	Update	<u>Sugg</u>	ested Scenarios from	the RAST Library	Go To S	cenario Results >
Create User Scenario	HAZOP Node: Plant Section = Equipment Type = Equipment Tag =	lank Iruck/Rail	In Intent Car/Tole containing Chlorine that is 18000 gal with a design pressure d or flow rate is 0 kg/min.	Scenarios in gray were considered but are excluded for reason noted		
Scenario Type	Scenario Comments	Parameters and Deviation	Initiating Event (Cause)	Required will NOT be reported. Initiating Event Description	Incident	Outcome
Damage from Movement	Spill caused by Truck or car movement while transfer is in progress	Flow-Loss of Containment	3rd Party Intervention	Driver inadvertantly moves truck or car	Full Bore Hole Size Leak	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration
Drain or Vent Valve Open	Drain or Vent Valve left open following loading/unloading or batch transfer	Flow-Loss of Containment	Human Failure Action more than once per quarter	Operator leaves Drain or Vent Open following unloading or clean-out	Drain or Vent Leak	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration
Hose or Loading Arm Connection	Spill associated with improper connection of hose or loading arm	Flow-Loss of Containment	Human Failure Action more than once per quarter	Operator fails to ensure a proper connection before starting material transfer	Gasket Failure	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration
Mechanical Integrity Failure - Extremely Large	Largest Pipe or Nozzle Size less than Extremely Large Hole Size	Flow-Loss of Containment	IEF=4 as determined by Process Safety	Failure from corrosion, fatigue, etc.	Extremely Large Hole Size Leak	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration
Mechanical Integrity Failure - Medium	Mechanical Integrity Loss of Containment for Medium Hole Size	Flow-Loss of Containment	IEF=4 as determined by Process Safety	Failure from corrosion, fatigue, etc.	Medium Hole Size Leak	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration
Mechanical Integrity Failure - Very Large	Largest Pipe or Nozzle Size less than Very Large Hole Size	Flow-Loss of Containment	IEF=4 as determined by Process Safety	Failure from corrosion, fatigue, etc.	Very Large Hole Size Leak	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration
Mechanical Integrity Failure - Very Small	Mechanical Integrity Loss of Containment for Very Small Hole Size	Flow-Loss of Containment	IEF=3 as determined by Process Safety	Failure from corrosion, fatigue, etc.	Very Small Hole Size Leak	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration
Piping or Equipment Leak - Full Bore	Loss of Containment for Full Bore Pipe or Equipment Nozzle Hole Size	Flow-Loss of Containment	Unloading/Loading Hose Failure	Failure of Hose from fatigue,etc.	Full Bore Hole Size Leak	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration
Excessive Heat Input - Heat Transfer	No Heating Media Temperature was noted	Pressure-High	BPCS Instrument Loop Failure	Failure of Flow Control	Criteria for Triggering Incidents Not Met	
Excessive Pad Gas Pressure	Maximum Pad Gas Pressure Does Not Exceed the Maximum Allowable Working Pressure or Relief Set Pressure	Flow-High	Regulator Failure	Regulator Fails causing high flow or pressure	Criteria for Triggering Incidents Not Met	
Overfill, Overflow, or Backflow	Overfill or Backflow of liquid with spill rate equal to the feed rate to a maximum quantity of the available inventory minus contained mass	Level-High or Flow- Backflow	BPCS Instrument Loop Failure	Failure of Level Indication with continued addition of material	Criteria for Triggering Incidents Not Met	
Pad Gas Compression	Maximum Feed or Downstream Pressure does not exceed the Maximum Allowable Working Pressure or Relief Set Pressure	Pressure-High	BPCS Instrument Loop Failure	Failure of Pressure Control	Criteria for Triggering Incidents Not Met	
Vacuum Damage	Equipment is rated for Full Vacuum	Pressure-Low	Human Failure Action more than once per quarter	Operator leaves valves closed allowing vacuum during emptying of equipment	Criteria for Triggering Incidents Not Met	

RAST also performs **Consequence Analysis** on each of the scenarios suggested (in addition to any scenarios the User adds). A summary of this analysis is found on the Consequence Summary worksheet. For example, the Incident Type suggested for the Uncontrolled Reaction scenario listed above is Rupture at Saturation Temperature.

Page 9 of 11

The analysis provides tolerable frequency for the various incident outcome based on the company's risk criteria. In this example, Offsite toxic represents a very high consequence scenario.

Unfortunately, this incident (release of chlorine caused by unloading hose failure) occurred at 9:20 am on August 14, 2002 at the DPC Enterprises repacking facility near Festus, MO. Fortunately, there were no fatalities but 66 people sought medical help. The hose failure was due to installation of an improper stainless steel rather than the required Hasteloy C hose.

<u>CSB Final Report – CHLORINE RELEASE, DPC Enterprises.</u> Figure 14 - Chlorine release at tank car station #3

KTVI-TV, St. Louis, Missouri

CSB estimated that a concentration of 3 ppm could have extended as far as 3.7 mile on the morning of the release where the wind speed was in the range of 1.5 to 2.5 m/sec. RAST estimated a distance of 2.1 miles to 3 ppm at a wind speed of 3 m/sec and 3.0 miles at a wind speed of 1.5 m/sec with Class D atmospheric stability (which is in good agreement). Fortunately, wind was in the opposite direction of the mobile home part toward the Intermodal Tire facility where employees were able to successfully evacuate.

Finally, RAST provides a list of possible cause-consequence scenario cases that may be selected as a starting point for **Layers of Protection Analysis (LOPA)**. In addition to the scenario that occurred at DPC Enterprises, RAST provided an additional 23 cause-consequence pair cases. These cases (in addition to cases the study team identifies) may be evaluated by LOPA to ensure compliance with a company's risk criteria. RAST allows a Technical Administrator to enter a company risk matrix or table of tolerable frequencies for severe consequences. In this example, a tolerable frequency of 10⁻⁷ / year was entered into RAST for a scenario with the potential to result in multiple offsite fatalities.

RAST contains Initiating Event frequencies and Probability of Failure upon Demand factors for common causes and protective layers used in LOPA analysis. RAST provides a LOPA format that helps to document process risk and the protective layers needed. A description of the scenario and tolerable frequency with key information from the Consequence Analysis is provided.

RAST provides descriptions of the scenario and consequences to assist the analysis team											
< Back to Scenario Results Expand All Collapse All											
Protection Gap	Scenario / Cross Ref	Description of Undesired Consequence Possible	LOPA Tolerable Frequency Factor (chemicals, quantity involved, and basis for calculations) +	Initiating Event	Probability of Ignition	Probability of Exposure (Presence Factor)	Time at Risk or Other Enabling Factor				
New	16.01	Tank Truck/Rail Car/Tote, Chlorine Rail Car, is ir	alved								
Instrumented Protection Credits Taken		in a Piping of Equipment Leak - Full Bore resulting in a Full Bore Hole Size Leak w subsequent 19800 kg airborne release of Chio an airborne release rate of 390 kg/min.	This incident could result in an Off-Site Toxic Release at a Distance to ERPG-2	Failure of Hose from installation of wrong material of construction.							
laken		IPL Sta	is? ->			lso provides a					
	Safety Analysis		Tool TFF = 7	Unloading/Loading Hose Failure		Event (or scena					
6			7	1		ed by the tean					
						by implement ial of construct					

Information regarding Protective Layers such as instrumented interlocks, pressure relief systems, and other safety related protection systems may be captured by the analysis team in addition to the safety integrity level or probability of failure on demand. Once the mitigated scenario frequency meets the tolerable frequency, the scenario is considered adequately managed.

BPCS Control or Human Response to Alarm +	BPCS Control or Human Response to Alarm +	SIS Function A +	SIS Function B	Pressure Relief Device	SRPS 1	SRPS 2	SRPS 3	Notes / Comments

Reference:

United States Chemical Safety and Hazard Investigation Board (CSB), Investigation Report, "Chlorine Release, DPC Enterprises, L.P., Festus, Missouri," Report No. 2002-04-I-MO, May 2003.