Risk Analysis Screening Tools (RAST)

Case Study – CAI and Arnel

CONFINED SPACE EXPLOSION
Danvers, Massachusetts
November 22, 2006
We begin the study by **Identifying the Equipment or Activity** for which we intend to perform an analysis. RAST uses the operation of a specific equipment item containing a specific chemical or chemical mixture to define the activity. For example, the operation of a storage tank, a reactor, a piping network, etc. Inputs are chemical data, equipment design information, operating conditions, and plant layout.
Case Study – CAI and Arnel

Process Description

The Danversport, MA plant is a 12,000 ft\(^2\) ink and paint manufacturing facility jointly owned by CAI and Arnel Companies. This facility began operations in the early 1960s within a minimally populated peninsula. Over several years, a large marina and many single family and duplex homes have located adjacent to the manufacturing plant, some homes as close as 150 ft. away.

The CAI production manager and five employees manufactured solvent-based inks in the Danvers facility. At the end of each day, they loaded the day’s production of ink products onto a truck and delivered it to the Georgetown warehouse. CAI stored alcohols, heptane, other solvents, and pigments and resins in the building and in three 3,000-gallon underground storage tanks (USTs).

Nine Arnel employees worked in the Danvers facility, which was the company’s only business location. Arnel manufactured solvent- and water-based stains, lacquers, coatings, and paints, as well as polyurethane coatings and adhesives. They stored alcohols and other solvents, pigments, paint resins, and industrial grade nitrocellulose at the facility.

This is an illustrative example and does not reflect a thorough or complete study.
Case Study – CAI and Arnel

Process Description

CAI and Arnel mixed solvents, pigments, resins and nitrocellulose to produce inks and paints in 1000 to 3000 gallon vessels. Vessels contained top mounted agitators and a steam heating jacket. Mix tanks 1 and 2 were fully open on top while mix tanks 3 and 4 were equipment with a 12 inch diameter access hatch to keep debris from falling into the tank but allowed vapor or air to pass through the opening.

Figure 6. CAI production and Arnel materials storage, area C.
Case Study – CAI and Arnel

Process Description

The initial mixture of more than 2000 gal. of heptane and propyl alcohol is added to the tank from 500 gal. totes. Resin is hand loaded from fiber drums to the top of the tank. This mixture is then heated to between 90 and 120°F to dissolve the resin. Temperature control is achieved by manually opening a ¼ inch steam valve leading to the steam heating jacket. Following a quality control check, the liquid is pumped out the bottom of the mix tank to smaller pigment mixers, as needed. Unused resin-solvent mixture would remain in the mix tank until it was all utilized in specific ink products.
Risk Analysis Screening Tools (RAST)
Case Study – CAI and Arnel

We will start by entering information for the Formulation Mixing Tank. At some point, we may decide to include other equipment in the study.

One the Main Menu, enter the equipment identification as the Formulation Mixing Tank, equipment type as Stirred Reactor/Crystallizer and location as Indoors.

Chemical Data – RAST requires a chemical or chemical mixture that is representative of the hazards. RAST does not perform time-dependent or location-dependent composition changes (such as within a reactor or distillation column). Where hazards may be significantly different between reactor feed and products, or distillation overheads versus bottoms; evaluation of the equipment may be repeated using different composition (such as Reactor A with feed composition and Reactor B with products composition).
Risk Analysis Screening Tools (RAST)
Case Study – CAI and Arnel

Begin by entering information on the Main Menu worksheet. Start with the Formulation Mixing Tank

Enter Equipment Identification, Equipment Type and Location
Case Study – CAI and Arnel

Chemical Data

Fortunately, all the chemicals needed in this evaluation are already in the Chemical Data Table internal to RAST. The solvent mixture concentration is assumed equal fractions of heptane and 1-propanol with a small amount of dissolved solids to represent the nitrocellulose resin is used as representative of the hazards.

The operating pressure is essentially atmospheric such that 0.01 bar gauge is entered.
The relief device is essentially the 12 inch access hatch on the top of the vessel and vented “indoors” which is not typical. The vessel jacket/bottom head is roughly 50 ft² and heated by low pressure steam.

Only minimal data will be entered at this time.

The equipment volume and maximum allowable working pressure

A largest “working” nozzle of 3 inches is entered representing the bottom liquid outlet.

The relief device is considered the 12 in hatch which vents indoors.

Heat transfer information is entered.
Ambient temperature of 25 C has been assumed (input left blank such that the default value is used).

The maximum flowrate to the tank is approximately 50 gal/min. from 500 gallon totes.

The maximum liquid height in the vessel is 8 ft.
Case Study – CAI and Arnel Site Layout

The enclosed production area (denoted as C, D, and E) is approximately 10,000 ft³. Areas denoted A and B contained offices and a laboratory. Fiber drums of nitrocellulose were stored in trailers east of the building.
A marina is adjacent to the site, approximately 150 ft east of the manufacturing area. A residential community is approximately 100 ft north with the nearest houses 150 ft away.

The CAI and Arnel facility is circled in the photograph.
Case Study – CAI and Arnel

Site Layout

There is a total of 15 employees between CAI and Arnel. For now, it is assumed that during normal work hours, 2 people might be in the production area and 5 in the offices and laboratory.

There has been assumed to be 10 people located at the marina between customers, maintenance and sales staff.

The enclosed process area is estimated to be 200,000 ft³. There are two 6,000 cfm exhaust fans allowing roughly 3.6 air changes per hour when running.
Chemical Processing Indoors

Indoor Chemical Processing often intensifies hazards as dilution of airborne chemicals is minimized. Release quantities to reach flammable or toxic concentrations may be very small.

An enclosed manufacturing volume of 1000 m3 only requires approximately 40 kg flammable vapor (such as 38 kg propane) for the entire volume to reach the lower flammable limit. A chemical with ERPG-3 of 150 ppm would only require 0.15 m3 of toxic vapor (such as 0.23 kg HCl) to reach a potentially toxic concentration within the enclosed process area.
Risk Analysis Screening Tools (RAST) Overview / Demonstration

Case Study – CAI and Arnel

Select **Save Inputs to Equipment Table** (blue macro button). All Input Information will be stored in the Equipment Table in a single row identified by a unique Equipment Identification or Tag.

- **Retrieve Information for an Equipment Item** by selecting any cell in the desired row and entering **Load Selected**

- **Input Data for an Equipment Item** stored in one row by Equipment Tag
To understand the Consequence Severity and Tolerable Frequency, the values for key Study Parameters and a Risk Matrix may be viewed on the Workbook Notes worksheet. These values may be updated on hidden worksheets and should reflect the company’s specific risk criteria.

For this case study, the Risk Matrix (right) has been used. The Human Harm criteria is based on an estimated number of people severely impacted (severe injury including fatality).
Suggested Scenarios for Formulation Mix Tank

Case Study – CAI and Arnel

Several scenarios suggest that the confined process area could reach a flammable concentration including vessel overfill and excessive heating.
Case Study – CAI and Arnel

Suggested Scenarios for Formulation Mixing Tank

- Review the suggested list of scenarios. Do these represent what you would expect for an indoor mix tank?
- Are there scenarios that have been “screened out” (shown in gray) that should be considered?
- Are there scenarios missing? (Possibly similar scenarios with different Initiating Events)
- Do you agree with the “worst” Consequence (Tolerable Frequency Factor) for the scenario listed?
For the Raffinate Splitter, select Vapor Vent – Heat Transfer as the Loss Event. This represents a “worst” Consequence for filling the enclosed area with flammable vapor.

Note under the Dispersion Summary that the enclosed area concentration is not estimated to reach the lower flammable limit if the ventilation system was running.

1 psi Blast Overpressure is estimated to be 183 m (600 ft) and message notes this exceeds the distance to the fence line.
Case Study – CAI and Arnel
Consequence Analysis

RAST estimated maximum 183 m (600 ft) to 1 psi blast overpressure from enclosed process area which is in excellent agreement with CSB modeling.

REPORT NO. 2007-03-I-MA, US Chemical Safety Board,
Figure 20. Aerial View showing estimated explosion overpressures
Case Study – CAI and Arnel

Risk Analysis / Layers of Protection Analysis (LOPA)

The initial Initiating Event description notes BPCS flow control failure which should be updated to Human Error more than 1 per quarter to reflect that operator failed to close the steam valve.

Select Loss Event of Vapor Relief Vent-Heat Transfer with Incident Outcome of Building Explosion for analysis in LOPA (“Yes”), then select LOPA Worksheet.

[Slide 21]

Risk Analysis Screening Tools (RAST) Overview / Demonstration

Scenario Definition

Protection Gap

Scenario / Cross Ref

Description of Undesired Consequence

LOPA Tolerable Frequency Factor

Initiating Event

Probability of Ignition

Probability of Exposure (Presence Factor)

Time at Risk

<table>
<thead>
<tr>
<th>Scenario Type</th>
<th>Initial Event</th>
<th>Loss Event</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive Heat Input - Heat Transfer</td>
<td>BPCS Instrument Loop Failure</td>
<td>Vapor Relief Vent - Heat Transfer</td>
<td>Building Explosion</td>
</tr>
</tbody>
</table>

LOPA Worksheet

<table>
<thead>
<tr>
<th>New Instrumented Protection Credits Taken</th>
<th>IPL Status</th>
<th>Tolerable Frequency Factor 6</th>
<th>BPCS Instrument Loop Failure</th>
<th>POI Probability Factor</th>
<th>Safety Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.01</td>
<td>Indoor Release of Flammable Material-POX</td>
<td>Failure of Flow Control</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes

- **Risk Analysis / Layers of Protection Analysis (LOPA)**
- **Risk Analysis Screening Tools (RAST) Overview / Demonstration**
- **Scenario Definition**
- **Protection Gap**
- **Scenario / Cross Ref**
- **Description of Undesired Consequence**
- **LOPA Tolerable Frequency Factor**
- **Initiating Event**
- **Probability of Ignition**
- **Probability of Exposure (Presence Factor)**
- **Time at Risk**

March 20, 2019

Slide - 21
Case Study – CAI and Arnel

Risk Analysis / Layers of Protection Analysis (LOPA)

Scenario Definition

<table>
<thead>
<tr>
<th>Protection Gap</th>
<th>Scenario / Cross Ref</th>
<th>Description of Undesired Consequence</th>
<th>LOPA Tolerable Frequency Factor (chemicals, quantity involved, and basis for calculations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>6.01</td>
<td>Stirred Reactor/Crystallizer, Formulation Mixing Tank, is involved in an Excessive Heat Input - Heat Transfer event resulting in a Vapor Relief Vent - Heat Transfer with subsequent 307 kg airborne release of a Heptane Mixture at an airborne release rate of 11.3 Lb/min. Estimated time to relief set pressure is 11 min.</td>
<td>+ > Human Error + +</td>
</tr>
<tr>
<td>Instrumented Protection Credits Taken</td>
<td></td>
<td>This incident could result in a Building Explosion with Explosion Distance to 1 psi Overpressure of 588 ft including Explosion Overpressure at Typical Construction Occupied Bldg 1 psi of 6.6 psi. 1 psi Blast Overpressure exceeds Distance to the Fence Line of 100 ft. Consider adjustment for Off-Site Impacts with the potential for Severity Level-5</td>
<td></td>
</tr>
<tr>
<td>Safety Analysis</td>
<td></td>
<td>Indoor Release of Flammable Material-POX</td>
<td></td>
</tr>
</tbody>
</table>

Human Error

- **Failure to close Steam Valve to vessel heater upon reaching desired temperature**

Possible IPLs

Human Error

- **Indoor Release of Flammable Material-POX**

Tolerable Frequency Factor 6

- **Probability of Ignition**: 0.1
- **Probability of Exposure (Presence Factor)**: 1
- **Time at Risk or Other Enabling Factor**: 1

IPL Status?

- **IPL Status?**

New Instrumented Protection Credits Taken

- **Credit Taken**: 4

RAST does not estimate offsite flammable impact directly but notes that the Consequence Severity may need to be adjusted.

The probability of ignition in RAST is estimated at 0.1 for an indoor flammable release into a properly electrically classified area. This is an administrative parameter on a hidden worksheet that may be updated.
Case Study – CAI and Arnel

Risk Analysis / Layers of Protection Analysis (LOPA)

<table>
<thead>
<tr>
<th>Notes / Comments</th>
<th>BPCS Control or Human Response to Alarm</th>
<th>BPCS Control or Human Response to Alarm</th>
<th>SIS Function A</th>
<th>SIS Function B</th>
<th>Pressure Relief Device</th>
<th>SRPS 1</th>
<th>SRPS 2</th>
<th>SRPS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>The scenario could have been managed by having a relief device set at a very low pressure or open line to vent outdoors and “sealing” the 12 inch solids loading hatch when not in use.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Temperature Closes Heating Media Valve</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPCS Independent of Initiating Event</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building ventilation system capable of preventing concentration from reaching the lower flammable limit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The scenario could have been managed by having a relief device set at a very low pressure or open line to vent outdoors and “sealing” the 12 inch solids loading hatch when not in use.

The existing safeguards (even if there were a high temperature alarm which automatically closes the steam valve) were not sufficient to manage a scenario of this consequence severity.
Risk Analysis Screening Tools (RAST)

Case Study – CAI and Arnel

Risk Analysis and Incident Investigation often use similar methods to better understand the scenario. Risk Analysis “anticipates” what could go wrong and what the potential consequences may be. For Incident Investigation, the Incident Outcome and Consequences are known in addition to the actual weather conditions, wind direction, time of day, and other factors.

For the Formulation Mixing Tank, RAST did suggest column Excessive Heating as one of many scenarios to consider. RAST also recognized that a Building Explosion could be a feasible Incident Outcome. The estimate blast overpressure from RAST was in excellent agreement with CSB modeling. Fortunately, this incident occurred at night and resulting in no fatalities but 10 injuries, 24 hours and 6 adjacent business destroyed.
Questions?