

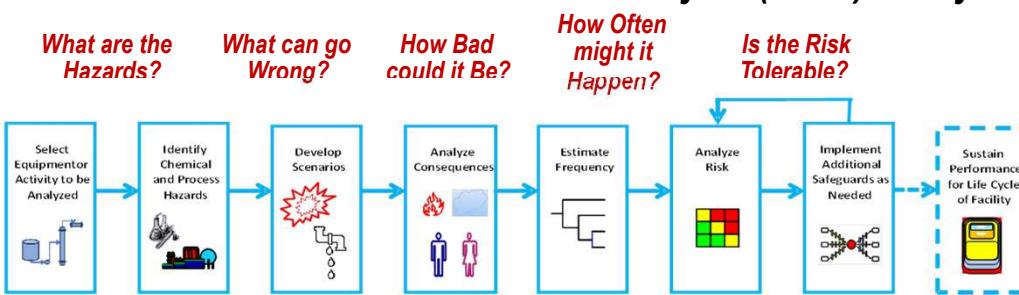
CPS
An AIChE Technology Alliance
Center for Chemical Process Safety

Chemical Hazard Engineering Fundamentals – Case Studies

Chemical Hazard Engineering Fundamentals (CHEF) Case Study – BP Texas City

Refinery Explosion And Fire
Texas City, Texas
2005

March 24, 2022


Slide - 1

CPS
An AIChE Technology Alliance
Center for Chemical Process Safety

Chemical Hazard Engineering Fundamentals – Case Studies

Case Study – BP Texas City

Hazard Identification and Risk Analysis (HIRA) Study

What are the Hazards?

What can go Wrong?

How Bad could it Be?

How Often might it Happen?

Is the Risk Tolerable?

This study begins by **Identifying the Equipment or Activity** for the analysis. We will use the operation of a specific equipment item containing a specific chemical or chemical mixture to define the activity, such as the operation of a storage tank, a reactor, or a piping network, etc. Inputs include chemical data, equipment design information, operating conditions, and plant layout.

March 24, 2022

Slide - 2

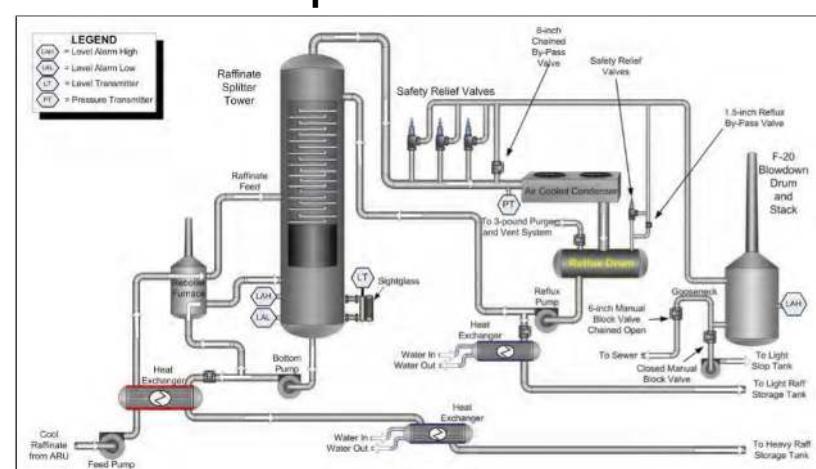
Case Study – BP Texas City

Process Description

The ISOM unit provided higher octane components for unleaded gasoline (petrol), consisting of four sections: an Ultrafiner desulfurizer, a Penex reactor, a vapor recovery / liquid recycle unit, and a raffinate splitter. At the BP Texas City refinery, the ISOM unit converted straight-chain normal pentane and hexane into branched-chain isopentane and isohexane for gasoline blending and chemical feedstocks.

This study focuses on the raffinate splitter section where a hydrocarbon mixture is separated into light and heavy components. About 40 percent of the raffinate feed was recovered as light raffinate (primarily pentane/hexane). The remaining raffinate feed was recovered as heavy raffinate. The raffinate splitter section could process up to 45,000 barrels per day (approximately 1,300 gallons/minute) of raffinate feed.

This is an illustrative example and does not reflect a thorough or complete study.


March 24, 2022

Slide - 3

Case Study – BP Texas City

Process Description

The process equipment in the raffinate splitter section consisted of a feed surge drum, a distillation tower, a furnace with two heating sections (one used as a reboiler for heating the bottoms of the tower and the other preheating the feed), air-cooled fin fan condensers, an overhead reflux drum, pumps, and heat exchangers.

Raffinate Splitter Tower System of the ISOM Unit

March 24, 2022

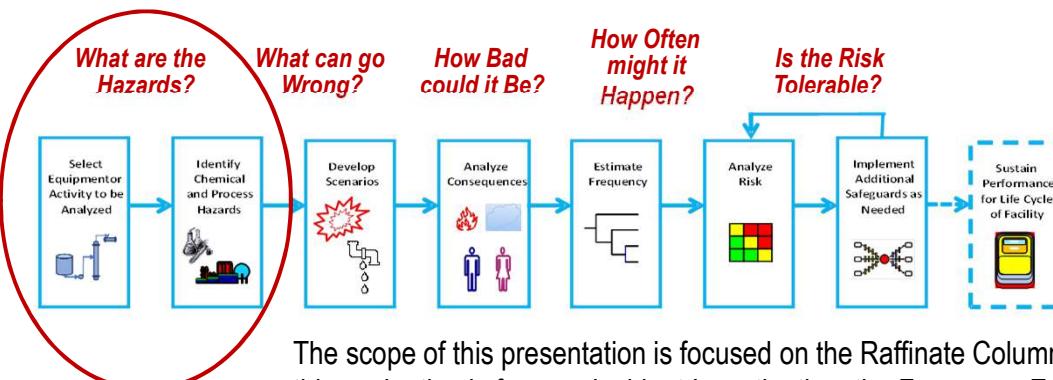
Slide - 4

Case Study – BP Texas City

Process Description

Liquid raffinate feed was pumped into the raffinate splitter tower near the tower's midpoint. An automatic flow control valve adjusted the feed rate. The feed was pre-heated by a heat exchanger using heavy raffinate product and again in the preheat section of the reboiler furnace, which used refinery fuel gas. Heavy raffinate was pumped from the bottom of the raffinate splitter tower and circulated through the reboiler furnace, where it was heated and then returned below the bottom tray. Heavy raffinate product was also taken off as a side stream at the discharge of the circulation pump and sent to storage. The flow of this side stream was controlled by a level control.

Light raffinate vapors flowed overhead, was condensed by air-cooled fin fan condensers, and then deposited into a reflux drum. Liquid from the reflux drum was then pumped back into the raffinate splitter tower above the top tray.


March 24, 2022

Slide - 5

Case Study – BP Texas City

Hazard Identification and Risk Analysis (HIRA) Study

The scope of this presentation is focused on the Raffinate Column. Since this evaluation is from an Incident Investigation, the Frequency Evaluation and Risk Analysis will not be addressed - the incident has already occurred and the weak protection layers already known. Thus, a "worst case" consequence that might be evaluated during risk analysis is addressed.

March 24, 2022

Slide - 6

Case Study – BP Texas City

Raffinate Composition

Raffinate splitter column simplified composition model (Fisher, 2006)

Compound	Weight Fraction
n-pentane	0.0383
2-methyl butane	0.0263
n-hexane	0.1519
2-methyl pentane	0.2950
n-heptane	0.3072
n-octane	0.1300
n-nonane	0.0409
Heavies as n-decane	0.0104
Total	1.0000

Typical Raffinate composition per *Refinery Explosion and Fire*, CSB Report No. 2005-04-I-TX page 259

For entry into CHEF, the mixture is simplified to:

0.06 n-pentane
0.45 n-hexane (including isohexane)
0.31 n-heptane
0.18 n-octane
1.00 Total

At the time of the incident, it was the normal fedrate of 55 kg/sec.

March 24, 2022

Slide - 7

Case Study – BP Texas City

Chemical Hazards Worksheet

A composition (weight fraction):
0.06 n-pentane
0.45 n-hexane
0.31 n-heptane
0.18 n-octane

The operating pressure was 25 psig (172 kPa gauge) and the operating temperature of 112 C was estimated as the saturation temperature or temperature such that the estimated vapor pressure matches the operating pressure for a boiling liquid.

CHEMICAL HAZARDS AND CHEMICAL MIXTURE INPUT INFORMATION

Inputs for one or more chemical components must be entered in shaded "yellow" fields if Table Data Value is not used

Process Inputs:	Input Value	Input Units
Temperature, T	112	112 0
Physical State of Contents	Liquid	Assumed liquid if blank
Estimated Vapor Pressure at Specified Temperature:	172.149	kPa gauge

Note that Weight Fraction, Molecular Weight and Vapor Pressure data, in addition to physical State of Contents, must be entered to estimate Vapor Composition
NIFPA Hazard Ratings (Table Values)

Chemical Inputs: Table Name	Input Name	Wt Fraction	Second Liq Phase	Mol Wt Data Table Value	Mol Wt Input Value	Mol Wt for Equation	Health	Flammability	Stability
Pentane		0.06		72.15	72.15	2	4		
Hexane		0.45		86.2	86.2	2	3		
Heptane		0.31		100.2	100.2	1	3		
Octane		0.18		114.2	114.2	2	3		
		1							

Up to 5 chemicals with the associated weight fraction may be added to create a mixture. Mixtures are assumed "ideal".

Temperature is adjusted until the estimated vapor pressure matches the operating pressure.

The chemical property inputs for the various worksheets are estimated from this composition at the appropriate temperature

March 24, 2022

CPS
An AIChE Technology Alliance
Center for Chemical Process Safety

Chemical Hazard Engineering Fundamentals – Case Studies

Case Study – BP Texas City Chemical Hazards Worksheet

ESTIMATED MIXTURE LFL and MINIMUM FLASH POINT equation 2-1

Chemical Name	Mol Fract Vapor / LFL	
Pentane	0.15581	The Minimum Flash Point for any
Hexane	0.53656	Component is:
Heptane	0.14130	-48.15 C
Octane	0.03813	

$\Sigma y / LFL = 0.87180$
 $LFL_{Mixture} = 1 / (\Sigma y / LFL) = 1.15$ Vol %

ESTIMATED MIXTURE ERPG-2 and ERPG-3 Dose adjusted ERPG per equation 3-1 and mixture ERPG per equation 3-3

Based on Exposure Duration of 60 min				
Chemical Name	ERPG-2 (t / 60) ^{1/n}	Mol Fract Vapor / ERPG-2 (t / 60) ^{1/n}	ERPG-3 (t / 60) ^{1/n}	Mol Fract Vapor / ERPG-3 (t / 60) ^{1/n}
Pentane	32500.0	0.00001	190000.0	0.00000
Hexane	2900.0	0.00020	8600.0	0.00007
Heptane	800.0	0.00019	4900.0	0.00003
Octane	385.0	0.00009	5000.0	0.00001

$\Sigma y / ERPG-2 = 0.00050$
 $ERPG-2_{Mixture} = 1 / (\Sigma y / ERPG-2) = 2005.61$ ppmv
 $\Sigma y / ERPG-3 = 0.00011$
 $ERPG-3_{Mixture} = 9195.07$ ppmv
Note: n is assumed 2 for interpolation of exposure duration less than one hour and 1 for interpolation of exposure duration to greater than one hour if not entered

March 24, 2022

✓ An estimated mixture flashpoint of -48 C (the minimum of any component) and estimated lower flammable limit of 1.15 volume % indicates a *potentially high flammability hazard*.

✓ An estimated ERPG-2 of >2,000 ppm would indicate a low to moderate toxicity hazard. The NFPA Health Ratings for these materials range from 1 to 2 also indicating a low to moderate hazard.

✓ There may be other hazards to consider such as thermal radiation due to a maximum process temperature greater than 60 to 80 C.

Slide - 9

CPS
An AIChE Technology Alliance
Center for Chemical Process Safety

Chemical Hazard Engineering Fundamentals – Case Studies

Case Study – BP Texas City Hazard Identification and Risk Analysis (HIRA) Study

```

graph LR
    A[Select Equipment or Activity to be Analyzed] --> B[Identify Chemical and Process Hazards]
    B --> C[Develop Scenarios]
    C --> D[Analyze Consequences]
    D --> E[Estimate Frequency]
    E --> F[Analyze Risk]
    F --> G[Implement Additional Safeguards as Needed]
    G --> H[Sustain Performance for Life Cycle of Facility]
    
```

What are the Hazards?

What can go Wrong?

How Bad could it Be?

How Often might it Happen?

Is the Risk Tolerable?

March 24, 2022

Slide - 10

Case Study – BP Texas City

Partial List of Hazard Scenarios per CHEF Example Scenarios

Scenario or Hazard Category	Parameter/ Deviation	Applicable Equipment	Initiating Events (Partial List)	Loss Event*	Incident Outcome
Mechanical Integrity Failure - Large	Flow-Loss of Containment	All - to address Residual Failures	Residual Failure	Very Large Hole Size Leak	Flammable Release Toxic Release Chemical Exposure
Mechanical Integrity Failure - Small	Flow-Loss of Containment	All - to address Residual Failures	Residual Failure	Very Small Hole Size Leak	Flammable Release Toxic Release Chemical Exposure
Overflow, Overflow, or Backflow	Level-High Flow-Backflow	All Liquid Containing Equipment	Level Control Failure Procedure Failure (Human Error)	Overflow Release Equipment Damage Equipment Rupture	Flammable Release Toxic Release Physical Explosion Business Loss
Overflow - Flooding or Plugging	Level-High	Adsorber/Scrubber Distillation Vapor Quench	Level Control Failure Pressure Control Failure Flow Control Failure	Overflow Release Equipment Damage Equipment Rupture	Flammable Release Toxic Release Physical Explosion Business Loss
Physical Damage or Puncture	Flow-Loss of Containment	Drum/IBC Handling Piping Pump**	Procedure Failure (Human Error)	Full-Bore Leak	Flammable Release Toxic Release

March 24, 2022

Slide - 11

Case Study – BP Texas City

Suggested Scenarios for Raffinate Column

WORKING WITH YOUR EVALUATION TEAM:

- Review the suggested list of scenarios. Do these represent what you would expect for a distillation column?
- Are there scenarios missing? (Possibly similar scenarios with different Initiating Events)
- Utilize an Appropriate Hazard Evaluation Technique (HAZOP, What If, etc.) to capture additional scenarios.

March 24, 2022

Slide - 12

CPS
An AIChE Technology Alliance
Center for Chemical Process Safety

Chemical Hazard Engineering Fundamentals – Case Studies

Case Study – BP Texas City

Hazard Identification and Risk Analysis (HIRA) Study

```

graph LR
    A[Select Equipment/Activity to be Analyzed] --> B[Identify Chemical and Process Hazards]
    B --> C[Develop Scenarios]
    C --> D[Analyze Consequences]
    D --> E[Estimate Frequency]
    E --> F[Analyze Risk]
    F --> G[Implement Additional Safeguards as Needed]
    G --> H[Sustain Performance for Life Cycle of Facility]
    F --> I[Is the Risk Tolerable?]
    I --> F
    
```

March 24, 2022

Slide - 13

CPS
An AIChE Technology Alliance
Center for Chemical Process Safety

Chemical Hazard Engineering Fundamentals – Case Studies

Case Study – BP Texas City

Site Layout

Several wooden trailers are located approximately 200 m from the Raffinate Splitter housing 20 people. The trailers are “low strength” construction. In addition, the process area appears to be relatively “low” equipment congestion.

The Blowdown Drum receives the discharge from the Raffinate Splitter relief devices is located 50 m from the wooden trailers and vents at an elevation of 36 m.

Approximately 500 m

March 24, 2022

Slide - 14

An AIChE Technology Alliance

CPS Center for Chemical Process Safety

Case Study – BP Texas City

Source Models Worksheet - Consequences

Use a Specified Release rate equal to feed rate of 55 kg/sec for Overfill at the Release Temperature of 112 C

LIQUID RELEASE - ESTIMATED FLASH FRACTION

Flash Fraction (equation 11-19): $F_v = C_0 (T - T_0) / \Delta H_v = (2.57) (112 - 74.9) / (323)$
 $F_v = 0.295$ Initial Fraction Vapor = 0.295

LIQUID RELEASE - ESTIMATED AEROSOL FRACTION

Selected Liquid Release Rate, $L = 55$ kg/sec

Flashing Fluid Density, $\rho = 1 / [F_v / \rho_v + (1 - F_v) / \rho_a] = 577$ kg/m³

Liquid or Two-Phase Release Velocity (equation 11-15): $v = 1.27 L / (\rho^2 \cdot C_0 \cdot \rho^2) = 1.27 (55) / (0.087^2 (0.61) (577)) = 26.3$ m/sec

Estimated Droplet Diameter (equation 11-21): $d_d = 170 (1 - 0.295) / (26.3)^2 = 0.1727$ mm

Liquid Spray Distance (equation 11-14): $s = v_t \cdot 0.45 \cdot \rho \cdot h^{1/2} = 0.45 (25.34) (1) \cdot 0.5 = 11.3$ m - or - 35.9 ft

Aerosol Temperature (equation 11-23): $T_a = (7.9 V_d^2 / \rho^2) (U_p / \Delta H_v) + C_0 (T - T_0) + C_1 (F_v \cdot \Delta H_v) = (7.9 (26.3)^2 / (0.087^2)) (100) + (5.57) (112 - 74.9) + 2.57 = 65.97$ C (339.12 K)

Aerosol Fraction (equation 11-22): $F_a = 0.043 \cdot V_d^2 \cdot M_w^2 \cdot P^{1/2} / (\rho^2 \cdot T \cdot (1 - F_v)) = 0.043 (26.3^2 / (0.087^2)) (78.684) (1) \cdot 10^6 / [577 (273.15 + 65.97) (1 - 0.295)] = 0.332$

LIQUID RELEASE - ESTIMATED POOL EVAPORATION

Release Duration, $t = \text{Inventory} / L = 55 / 55 = 1$ sec

Estimated Liquid Rate to Pool, $L = (1 - F_v) (1 - F_a) = 55 (1 - 0.295) (1 - 0.332) = 25.9011$ kg/sec

Pool Temperature (equation 11-26): $T_p = (T_0 + (C_0 - A_p) (S - U_{pool} \cdot \Delta H_v)) / (U_p C_p + U_{pool} A_p)$
 $T_p = 11.05$ C (284.2 K)

Vapor Pressure at Pool Temp, $P^{1/2} = 11.13$ kPa

Daytime Wind Speed (ft/sec) / Location = 3 m/sec

Evaporation Rate (equation 11-27): $r_v = 0.0021 M_w^{20} \cdot S^{10} \cdot P^{1/2} / T_p = 0.0021 (86 / 23) (3 / 0.78) (1.178) / (273.15 + 11.05) = 0.003983$ kg/sec m²

Estimated Max Pool Area (equation 11-24): $A_p = L \cdot U_p / (r_v \cdot 100) = 100 / (0.003983 / 12) = 25.9017 / [577 / (100 \cdot 3600)] + 0.003983 / 12 = 7210$ m²

Pool Evaporation = $r_v \cdot A_p = (0.003983) (7210) = 25.9011$ kg/sec limited to pool fill rate

LIQUID RELEASE - ESTIMATED AIRBORNE QUANTITY

Liquid Release - Airborne Quantity = $L \cdot F_a \cdot F_v \cdot F_d = 55 \cdot 0.332 \cdot 0.295 = 7200$ kg/h

Liquid Release - Airborne Quantity for Equipment Rupture

If Initial Vapor / Total Vapor or 0.01 < F_v < 0.01, Use Maximum Pool Evaporation Rate
 $r_v = 0.003983 / 12 = 0.00332$ kg/sec or 1.178 kg/sec

Total Airborne Rate of 55 kg/sec with a liquid pool of 7210 m² after 1 hour
 $1 \cdot 55 \cdot 0.332 \cdot 0.295 = 198000$ kg - or - 435600 lb based on pool evaporation for 1 hour

Chemical Properties at Column Release Temperature of 112 C

Physical State: Liquid
 Molecular Weight: 55
 Normal Boiling Point, T_b: 74.9 C
 Liquid Properties at Release Temperature:

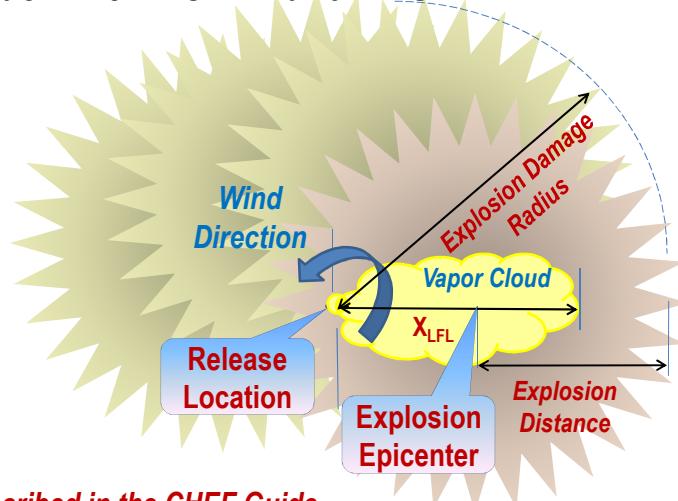
- Vapor Pressure, P^{1/2}: 273 kPa absolute
- Density, ρ : 877 kg/m³
- Liquid Heat Capacity, C_l: 2.57 kJ/kg C
- Heat of Vaporization, ΔH_v : 323 kJ/kg

STEP 1 - Enter Equipment and Plant Layer Information

Equipment Location: 1000 ft above sea level
 Equipment Layer: 1000 ft above sea level
 Estimated Containment Loss: 0.0001

Level Height with Equipment, H: 0 ft
 Diked Area: 0 ft (Leave Blank if No Dike)
 Leaking Location above Surface, h: 1 m

Leave Elevation Blank for now as Discharge was to a Blowdown Tank which then Overflowed to the Atmosphere


Vapor Cloud Explosion

Simple Modeling Approach within CHEF and RAST

The entire vapor cloud is considered a single Potential Explosion Site with epicenter at the center of the flammable cloud ($0.5 X_{LFL}$).

An single overall level of congestion and confinement for the entire cloud is used.

Wind direction is assumed toward greatest population or building with highest occupancy.

Methodology is described in the CHEF Guide

March 24, 2022

Slide - 17

Site Layout

Congestion or Obstacle Density Categories

The method described in CHEF is limited to consideration of the entire cloud volume as a single Potential Explosion Site (PES) at an overall or average category of process equipment congestion. This technique does not account for small localized areas of higher congestion where blast overpressure will be higher.

Low – Only 1-2 layers of obstacles. One can easily walk through the area relatively unimpeded.

Medium – 2-4 layers of obstacles. One can walk through an area, but it is cumbersome to do so.

High – Many layers of repeated obstacles. One could not possibly walk through the area and little light penetrates the congestion .

March 24, 2022

Slide - 18

Chemical Hazard Engineering Fundamentals – Case Studies

CPS An AIChE Technology Alliance Center for Chemical Process Safety

Case Study – BP Texas City Explosions Worksheet - Consequences

Use Vapor Cloud Explosion and Distance of Interest as 50 m from Release Point to Project Trailers

Chemical Properties at Blowdown Tank Release Temperature of 74.9 C (estimated normal boiling point)

Enter Distance to LFL from Vapor Dispersion estimate, vapor rate and "low" degree of congestion

EXPLORATION INPUT INFORMATION

Required inputs are shaded "yellow"

1-Select Type of Explosion and Distance of Interest

2-Enter Equipment Burst Pressure and Volume for Physical Explosions

3-Enter Equipment Burst Pressure and Volume for Complicated Phase Explosions

4-Enter Chemical Properties or Selected Chemical Name from Pic List

5-Enter Information for Calculation of LFL and Vapor Dispersion

6-Enter Equipment Input for LFL and Vapor Dispersion

7-Enter Equipment Input for LFL and Vapor Dispersion

8-Enter Equipment Input for LFL and Vapor Dispersion

BAKER-STREHLOW-TANG N

Vapor Cloud Explosion (based on 3 m/sec)

Estimated Distance to 1 psi Blast Overpressure is 298 m and Estimated Overpressure at 50 m Distance of Interest is 3.2 psi

Fuel Reactivity

	Low	Medium	High
High	0.5	>1	>1
Low-Medium	0.35	0.5	1

$\zeta = 2440 Q_e^2 / (\Phi u M_w C_{LFL}) = 30000 \text{ m}^3$

$X_{EE} = 0.5 X_{LFL} = 0.5 / 2 = 0.25 \text{ m}$

$V_c = 2440 Q_e X_{LFL} / (\Phi u M_w) = 107.5 \text{ m}^3$

Potential Explosion Site Volume limited to 30000 m³

Explosion Energy (equation 13-3), $Q_e = 3500 \text{ kJ}$

$3500 / 30000 = 0.068 \text{ kJ}$

Scaled Overpressure at 1 psi = 0.068

Distance to 1 psi = $R = (2 Q_e / P_0)^{1/3} = 1.5 \text{ m}$

Distance to 50 m = $1.5 [2 (10500000) / 101.3]^{1/3} + 107.5 = 297.8 \text{ m}$

Baker-Strehlow-Tang Overpressure Curves

Note: $P_0 = 101.3 \text{ kPa}$

From Graph, Scaled Distance, $R = (X - X_{EE}) / (2 Q_e / P_0)^{1/3} = 0.01$

Scaled Overpressure = 0.22

Overpressure at 50 m = 3.2 psi or 22.3 kPa

March 24, 2022

Slide - 19

Chemical Hazard Engineering Fundamentals – Case Studies

CPS An AIChE Technology Alliance Center for Chemical Process Safety

Case Study – BP Texas City Consequence Analysis

A simplification when estimating risk is choosing a wind direction toward the highest population. This is quite reasonable in a Risk Analysis where the **wind direction is unknown**.

In the actual incident, the wind direction was **toward the southeast** rather than west toward the wooden trailers.

Wind Direction represents a key difference between estimates for Risk Analysis versus Incident Investigation. **Blast overpressure at the wooden trailers would likely have been higher if the wind direction was toward the trailers.**

REPORT NO. 2005-04-I-TX , US Chemical Safety Board, Figure H-2 Blast Overpressure Map

CHEF estimated maximum 298 m 1 psi overpressure distance from release point assuming "low" equipment congestion.

CHEF estimated 215 m distance to LFL concentration using default 3 m/sec wind speed and class D atmospheric stability

Release Point – Blowdown Stack

The explosion epicenter is selected as the center of LFL cloud

Slide - 20

Chemical Hazard Engineering Fundamentals – Case Studies

Case Study – BP Texas City

Consequence Analysis – Impact Estimation

Use Outdoor Release Location and Vapor Cloud Explosion

STEP 1 - Select Location and Scenario Outcome

Release Location: **Outdoor** (Assumed Vapor if flammable)

Scenario Outcome: **Vapor Cloud Explosion**

Number of Personnel Routinely in the Immediate Vicinity? **100** (Assumed 1/10)

STEP 2 - Enter Chemical Properties (or Select Chemical Name from the List)

Chemical Name: **Q110**

STEP 3 - Enter Plant Layout Information

Distance to Property Limit or Offsite Population (Fence Line): **327 m**

Fraction of Offsite Population Outdoors: **0.2**

Fraction of time for Night Weather: **0.0015**

Offsite Population Density: **0.0002 people/m²**

Occupied Building Type: **Low Strength**

Fraction of Impact Area Containing Occupied Buildings: **0.5**

Maximum Number of Occupants in Occupied Building: **20**

Onsite Outdoor Population Density: **0.0002 people/m²**

Outdoor Population Density should account for maintenance and other personnel who may occasionally be in nearby outdoor process areas.

Enclosed Process Area Volume, V_{EPA} : **2 cu m**

Maximum Number of Personnel within Enclosed Process Area: **2**

Enter Low Strength Building with 20 Occupants

OUTDOOR FLAMMABLE IMPACT

Flash Fire

Distance is 1/2 LFL of 327 m Exceeds 3 m Threshold for Severe Impact.

Impact Area (Equation 14-1): $0.3 \times \text{Area} \times \text{LFL}^2$
 $= 0.3 (327)^2 = 32078.7 \text{ m}^2$

Flash Fire Personnel Severely Impacted, N = Impact Area times Population Density plus Personnel in Immediate Area
 $N = (32078.7 \text{ sq m}) 0.0002 \text{ people/sq m} + 1 = 7418$

Vapor Cloud Explosion (VCE)

Total Airborne Release of Unlimited Kg Exceeds 100 Kg Threshold for Vapor Cloud Explosion

Overpressure at Nearest Wall of 3.2 psi Exceeds 1.3 psi Threshold for Building Damage

Impact to Occupied Building (Figure 14.11), Vulnerability = **0.905**

Impact to Occupied Building Occupants Severely Impacted = Vulnerability times Total Building Occupants =
 $N = 0.905 (20) = 18.1$

Total Personnel Severely Impacted = Flash Fire + Occupants Impacted = **2552**

Estimate of 18 fatalities within the Occupied Building and an additional 7 outdoors from Flash Fire at default population density

March 24, 2022

Slide - 21

Chemical Hazard Engineering Fundamentals – Case Studies

Case Study – BP Texas City

Hazard Identification and Risk Analysis (HIRA) Study

What are the Hazards?

Select Equipment Activity to be Analyzed

What can go Wrong?

Identify Chemical and Process Hazards

How Bad could it Be?

Develop Scenarios

How Often might it Happen?

Analyze Consequences

Is the Risk Tolerable?

Estimate Frequency

Analyze Risk

Implement Additional Safeguards as Needed

Sustain Performance for Life Cycle of Facility

March 24, 2022

Slide - 22

Case Study – BP Texas City

Risk Analysis / Layers of Protection Analysis (LOPA)

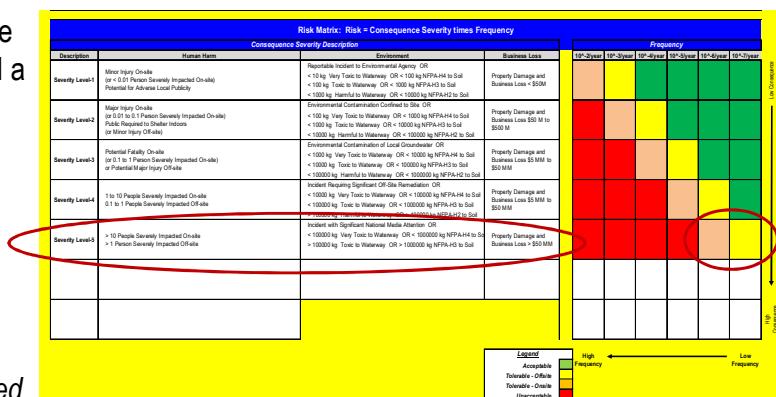
Initiating Event – either Basic Level Control System failure (instrument was not indicating the correct level) or Human Performance Failure as “operators routinely deviated from written procedures maintaining a high liquid level during startup to minimize the potential for costly damage to the fired heaters”. From the CCPS Book, Layers of Protection Analysis, a frequency of 0.1 per year may be appropriate.

Loss Event – Overfill of the Raffinate Splitter Column to the Blowdown Tank with subsequent release of flammable material to the atmosphere.

Incident Outcome and Consequence – Vapor Cloud Explosion resulting in greater than 10 potential fatalities.

March 24, 2022

Slide - 23



Risk Matrix

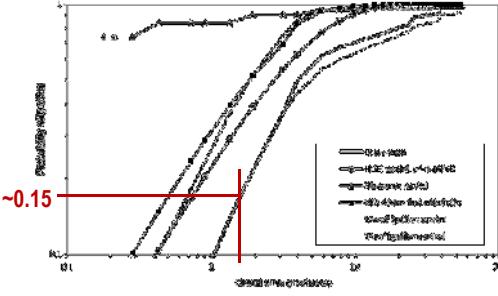
Risk Analysis Screening Tool (RAST)

To understand the Consequence Severity and Tolerable Frequency, the values for key Study Parameters and a Risk Matrix may be viewed on the Workbook Notes worksheet. These values may be updated on hidden worksheets and should reflect the company's specific risk criteria.

For this case study, the Risk Matrix (right) has been used. The Human Harm criteria is based on an estimated number of people severely impacted (severe injury including fatality).

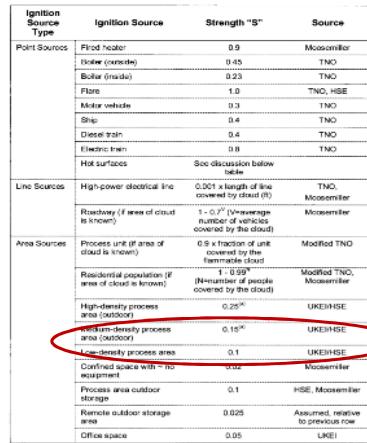
March 24, 2022

Slide - 24


CPS
An AIChE Technology Alliance
Center for Chemical Process Safety

Chemical Hazard Engineering Fundamentals – Case Studies

Case Study – BP Texas City


Risk Analysis / Layers of Protection Analysis (LOPA)

Conditional Modifier – the probability of ignition for an unknown source assuming “good” ignition controls

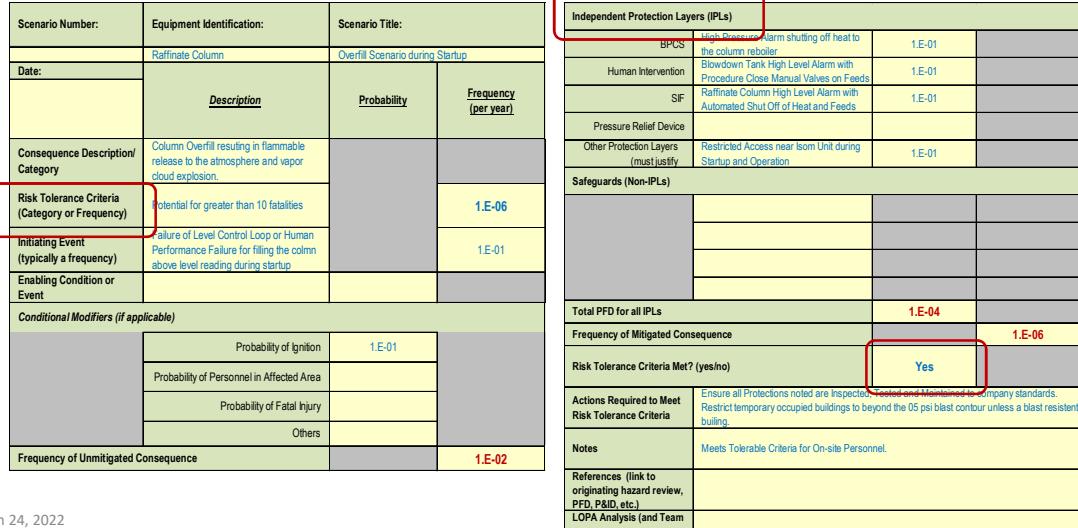
UK HSE Research Report 226, Development of a method for the determination of on-site ignition probabilities (2004)

Cloud Area ~ 0.3 (235 m 2) = 16568 m 2 = 1.66 hectares

CCPS, Guidelines for Determining the Probability of Ignition of a Released Flammable Mass, (2014)

A reasonable probability of ignition for this case may be 0.1 to 0.15 as the process area is likely electrically classified with “good controls”.

March 24, 2022


Slide - 25

CPS
An AIChE Technology Alliance
Center for Chemical Process Safety

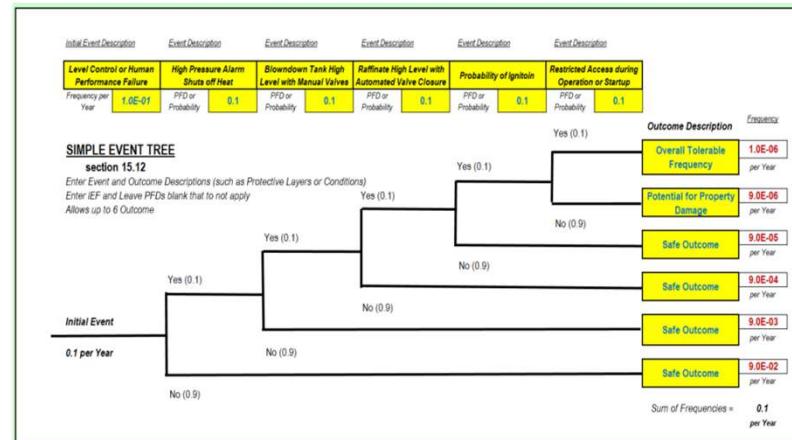
Chemical Hazard Engineering Fundamentals – Case Studies

Case Study – BP Texas City

Risk Analysis / Layers of Protection Analysis (LOPA)

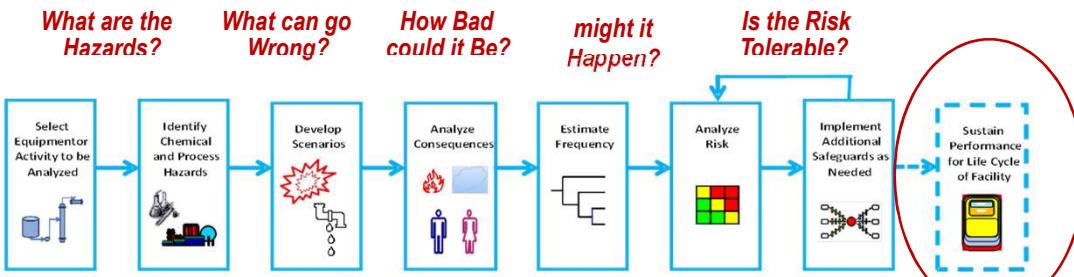
March 24, 2022

Slide - 26


Case Study – BP Texas City

Frequency Evaluation Worksheet

The existing safeguards were close to sufficient for managing this scenario to a tolerable risk level had they been adequately maintained and some actions automated rather rely only on operator response to an alarm. In addition to those listed in the LOPA worksheet, several other alarms existed (such as high pressure) that may have contributed to reducing the overall scenario frequency if the potential for column overfill would have been recognized.


March 24, 2022

Slide - 27

Case Study – BP Texas City

Sustaining Performance

The existing safeguards were sufficient for managing this scenario to a tolerable risk level had they been adequately maintained and some actions automated rather rely only on operator response to an alarm. In addition to those listed in the LOPA worksheet, several other alarms existed (such as high pressure) that may have contributed to reducing the overall scenario frequency if the potential for column overfill had been recognized.

March 24, 2022

Slide - 28


CHEF and RAST Estimates

Case Study – BP Texas City

Risk Analysis and Incident Investigation often use similar methods to better understand the scenario. Risk Analysis “anticipates” what could go wrong and what the potential “worst” consequences may be. For Incident Investigation, the Incident Outcome and Consequences are known in addition to the actual weather conditions and wind direction.

For the Raffinate Splitter, RAST did suggest column overfill as one of many scenarios to consider. RAST also recognized that a Vapor Cloud Explosion could be a feasible Incident Outcome for an Overfill loss event. RAST was conservative in estimating blast damage as actual wind direction was not toward the wooden trailers. However, the “order of magnitude” estimate of consequences seems reasonable. The estimated number of people severely impacted in RAST was higher than the actual incident (25 versus 15 fatalities and 66 seriously injured).

Questions?

