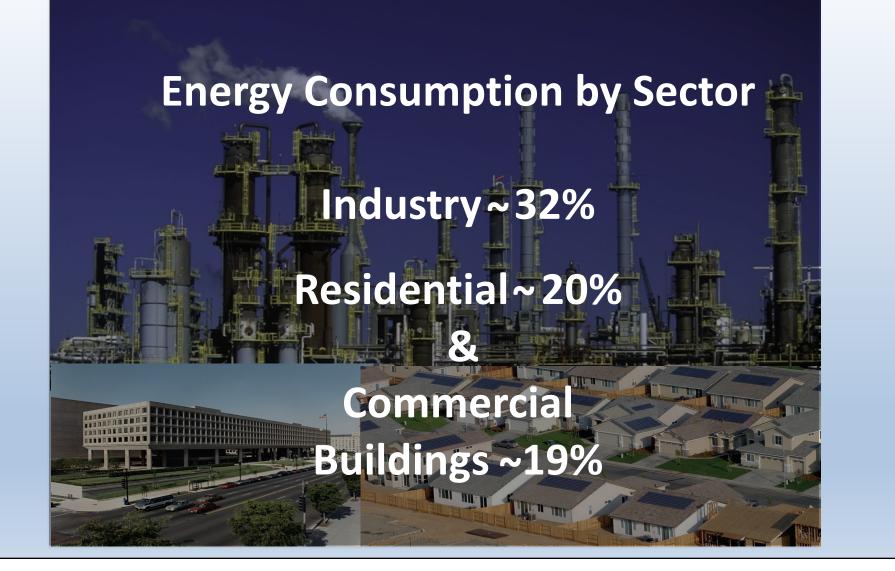


Hydrogen for Mobility and Power: Market, Application, and Safety

Introducing the **Center for Hydrogen Safety**

Nick Barilo Director, Center for Hydrogen Safety Larry Moulthrop Member, Hydrogen Safety Panel

June 2019

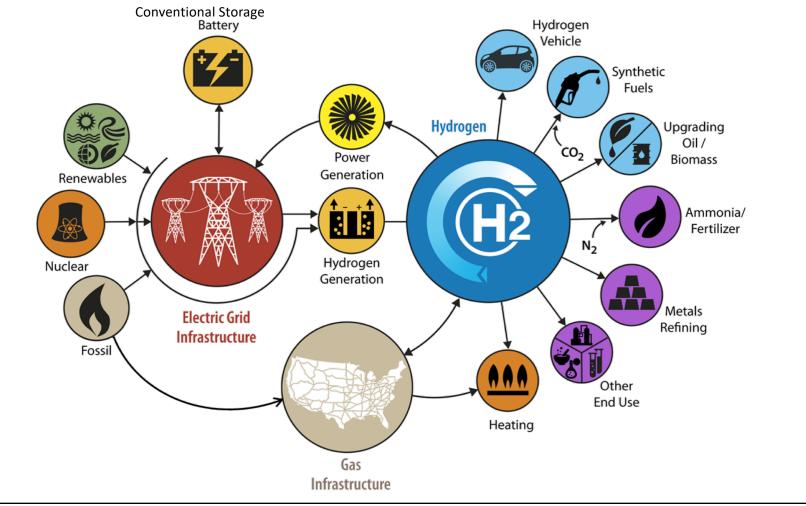

The Future of Hydrogen: Seizing today's opportunities 14June2019 IEA report to the G20 "renewable sources of H2 fuel is a reasonable step toward a low-carbon future"

> "store the variable output from renewables like solar PV and wind to better match demand"

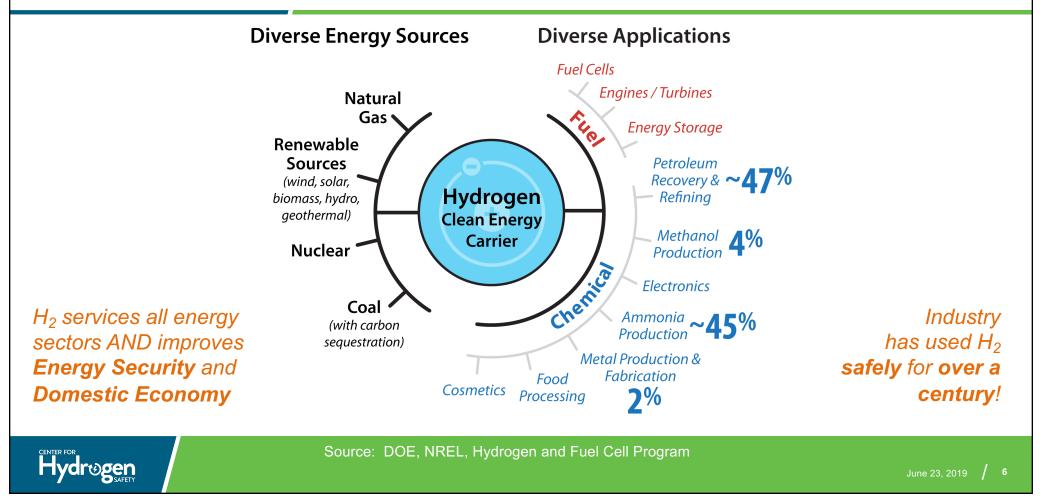
"help to improve air quality and strengthen energy security"

> "decarbonise sectors – including long-haul transport, chemicals, and iron and steel where it is proving difficult to meaningfully reduce emissions"

https://webstore.iea.org/download/direct/2803?fileName=The_Future_of_Hydrogen.pdf


Transportation Sector

Accounts for roughly 29% of all U.S. energy consumption


Over 90% dependent on petroleum

2nd largest expense after housing

The Goal... H₂@Scale: Enabling affordable, reliable, clean, and secure energy across sectors

Why Hydrogen as mobility Fuel?

- Most abundant element in the universe
- Excellent energy carrier
- Ultra-low/Zero emissions
- Economically competitive
- Safe and secure
 - More than 100 years of industrial use
 - Can be used as safely as gasoline
 - Domestically produced from a variety of sources

H2 fuel dispenser (Photo :California Fuel Cell Partnership)

Fuel Cells in Use, U.S.

Material handling equipment

>25,000 operating/ordered in 26 US states

Fuel cell (FC) technology proves more efficient, lower operating cost and less warehouse space vs. batteries

Stationary power

>240 MW total installed, 43 states

High-temp FCs reform natural gas/biogas to H₂ internally, providing combined heat and power, critical reliability

Backup critical power

41 US states, >8500 installations

Telecommunications towers, railroad switching and signal stations, government facilities, and utility networks use FC for critical backup

(Plug Power)

(Bloom Energy/Walmart)

(Plug Power)

- State of the States: Fuel Cells in America 2016, 7th Edition (<u>https://tinyurl.com/mrj8spu</u>)
 - The Business Case for Fuel Cells: Delivering Sustainable Value (<u>http://www.fchea.org/s/2016-Business-Case-dwcy.pd</u>
- http://www.cleanegroup.org/wp-content/uploads/Fuel-Cells-for-Resilient-Power-Case-Studies
 - tor resilience ower case studies 2015.put

Fuel Cells for Resiliency - Seamless Load Transfer & Backup Power

October 2012 Hurricane Sandy

 All 23 fuel cells in the impacted areas remained operational during the storm

CT October 2011 Winter Storm Alfred

- South Windsor, CT High School serves as community shelter
- Whole Foods Market avoids costly food spoilage
- CT Juvenile Training Facility operates continuously

San Diego, CA September 2011 Blackout

- Albertsons Supermarket remains open for business
- · Perishable inventory protected

Fuel Cells in Utility Microgrids

Town of Woodbridge, Connecticut

- Fuel cell microgrid supplies grid and maintains power during outages for 6 critical town buildings
- 2.2 MW system provides heat to a local high school
- FCE fuel cell operating since January 2017

Hydrogen SAFETY

New Jersey	Category	Commercial Deployments	Government Deployments	Initiatives/ Incentives/Funding		
	Fuel Cell Vehicles		H2 FCEV fueling stations: Lodi, Whippany NJ stations part of northeast states FCEV hydrogen fueling corridor H2 Fuel Cell material handling forklifts: 180+ Wakefern Food/Newark Farmers Market warehouse			
Ø	Hydrogen Stations	hydroger <mark>H2 Fuel (</mark>				
	Fuel Cell Buses	• 25+ Fi Multiple	 25+ FreezPak Logistics/Cataret cold storage Multiple stationary fuel cell installations for primary and 			
	Material Handling Equipment	AT&T 700kV	 resilient power, including: AT&T 2 MW in Middletown, 600 kW in Freehold, and 700kW in Trenton Verizon 2 MW at Basking Ridge headquarters Walmart Mays Landing, Washington Township, Williamstown, Woodbury retail stores FAA Teterboro Remote Transmitter Receiver 			
	Other Fuel Cell Vehicles	• Walm Willia				
۲	Large Stationary Fuel Cells					
•	Small Stationary Fuel Cells					
Source: DOE FCTO 2017 State of the States (numbers may be higher today) / 11						

Maryland	Category	Commercial Deployments	Government Deployments	Initiatives/ Incentives/Funding
	Fuel Cell Vehicles	► 60+	FCV forklifts at a Who	ole Foods / Landover
(Hydrogen Stations	 80+ FCV forklifts at U.S. Postal Service Nationa Distribution Center in Capitol Heights 1.6 MW MC fuel cell supplies power to Fort Meade / National Security Agency (NSA) 		
	Fuel Cell Buses			
	Material Handling Equipment			
	Other Fuel Cell Vehicles			
	Large Stationary Fuel Cells			
•	Small Stationary Fuel Cells			
Source: DOE FCTO 2017 State of the States (numbers may be higher today) / 12				

Real World Applications – In the U.S.

Fuel cell delivery and parcel trucks starting deliveries in CA and NY

<section-header>

Photo Credit: Sandia National Laboratories

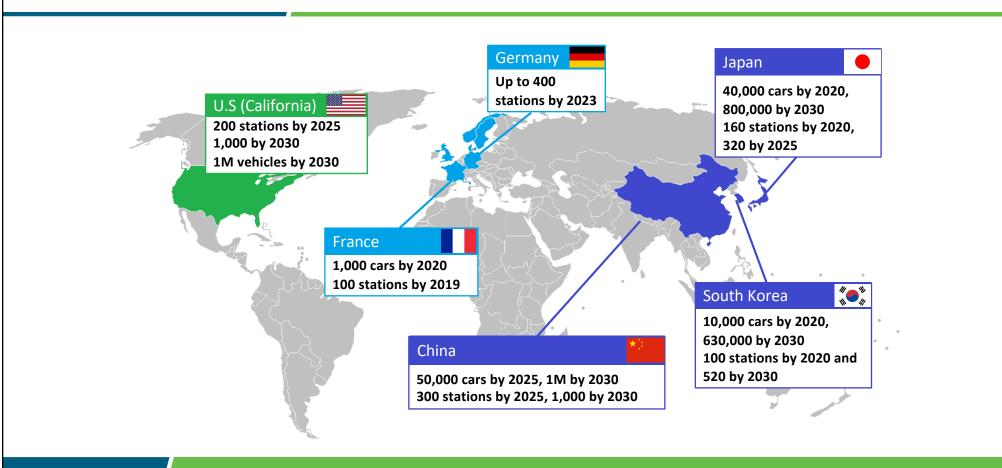
Real World Applications – In the U.S.

Fuel cells provided backup power during Hurricane Sandy in the U.S. Northeast

Fuel cell buses in California surpass 19M passengers

> Fuel cells used to power new World Trade Center in NYC

Hydrogen Safety


6/23/19 / 14

Real World Applications – Abroad

Increased International FCEV Activity

Source: DOE Fuel Cell Technologies Office, August 2018

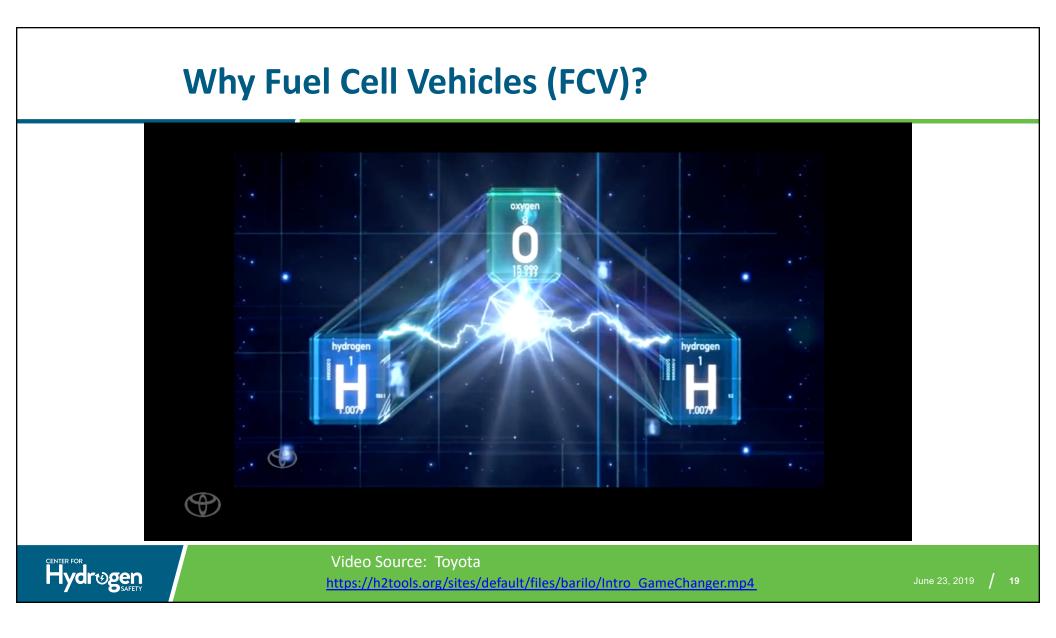
Hydrogen Safety

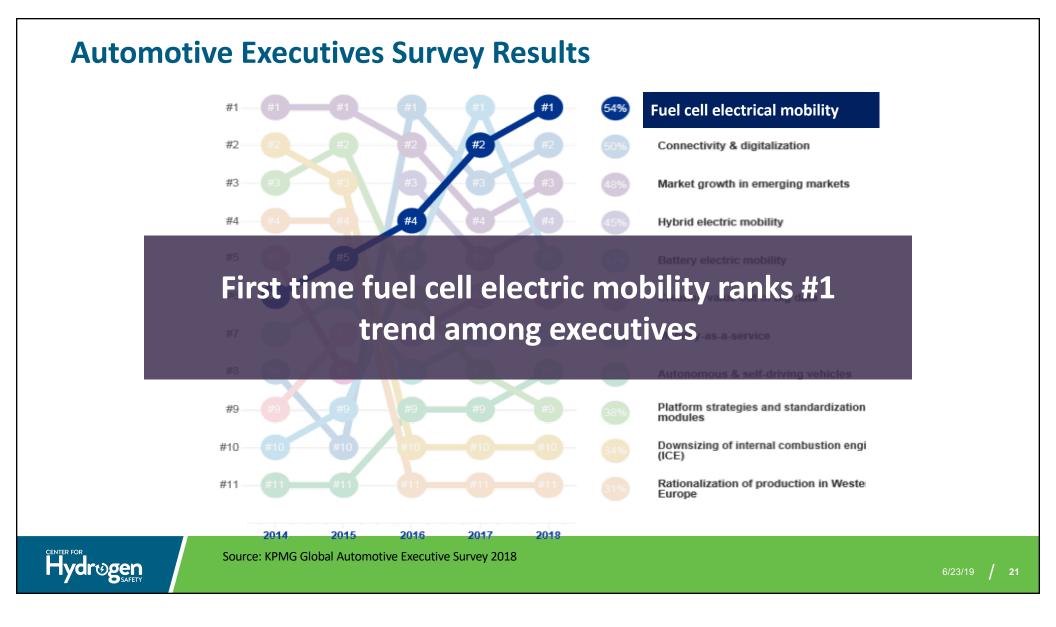
Material Handling – H₂ FCV Success Story

> 25,000 operating/ordered HFC fork trucks in 26 US states/19M fuelings

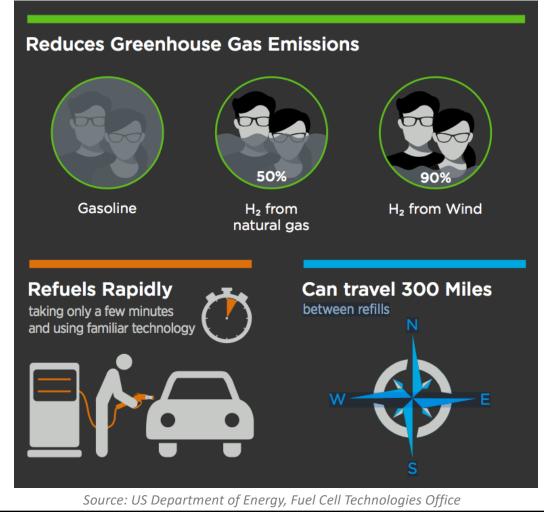
- Amazon buying 23% of FC maker Plug Power and adding *PEM* fuel cell forklifts into many distribution operations
- USPS using 80 FC in Capital Heights, Maryland material handling fleet
- In planning or use by Ace Hardware, Coca-Cola, FedEx, Home Depot, Newark Farmer's Market, Kroger, Lowe's, Proctor & Gamble, Sysco, Walmart, Wegmans, Honda, Volkswagen, BMW, and more
- **Space saving** H₂ infrastructure takes much less space than a battery room, recouping valuable warehouse storage space

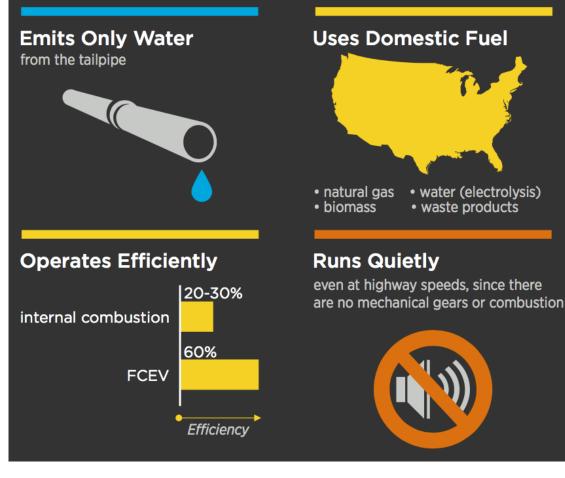
The Business Case for Fuel Cells: Delivering Sustainable Value (<u>http://www.fchea.org/s/2016-Business-Case-dwcy.pdf</u>)

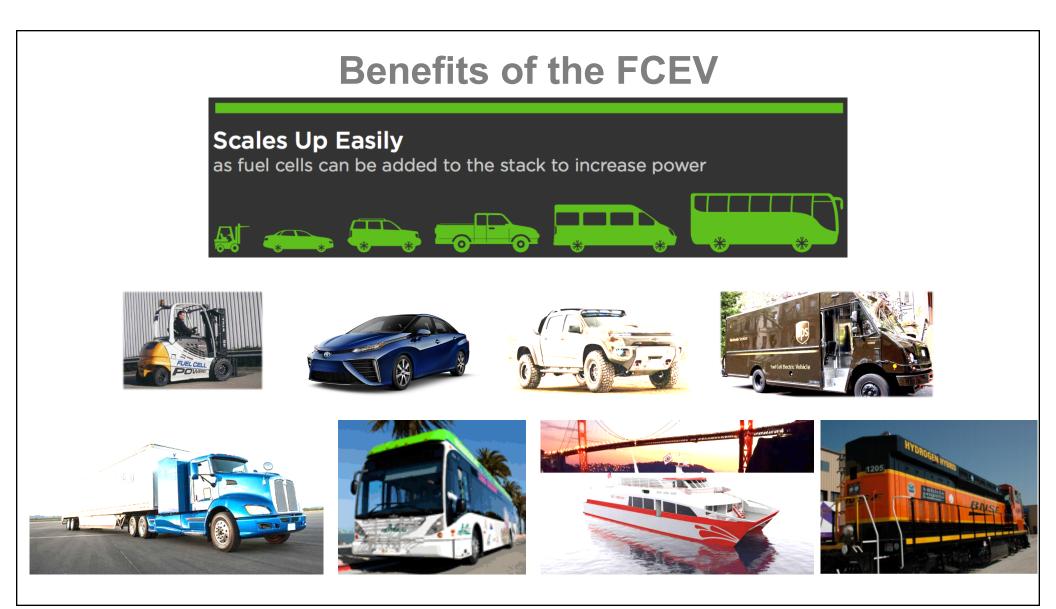

Yale 2016 brochure - The Adoption of Hydrogen Fuel Cell-Powered Lift Trucks https://about.usps.com/postal-bulletin/2017/pb22465/html/cover_006.htm

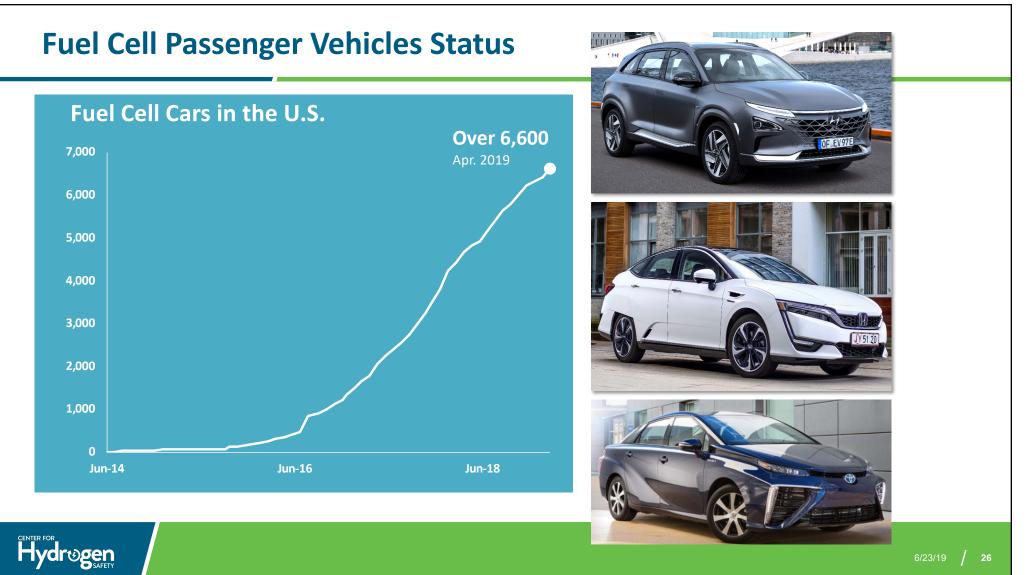

FC Powered Industrial Trucks Can Do More Work

	Lead-acid battery	H ₂ fuel cell pack	
Recharge	~20 min swap to charge room	<5 min H ₂ fueling by operator	
Work	voltage decay => power loss	Constant FC voltage = max. power	
Vork Vorage decay => power loss Image: second se		Constant Voltage	
i e retrojit tr	ruck at inside H ₂ fueling station SINGLE SHIFT: 8-HOURS		

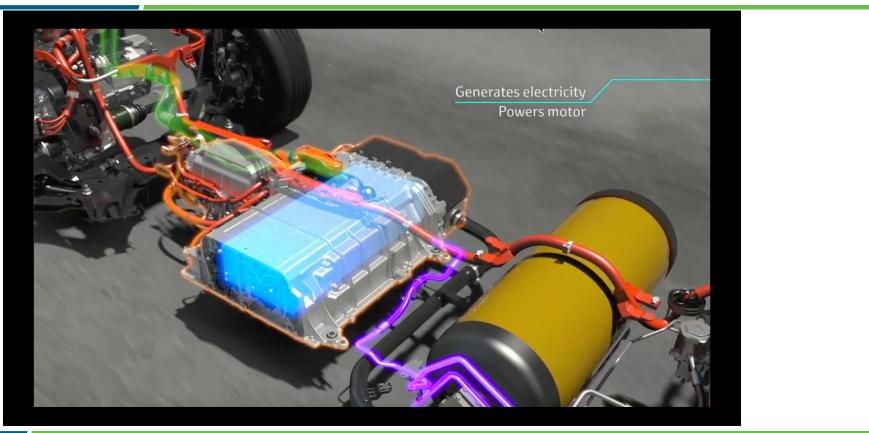

BMW regained > 156 hours of lost productivity over three-shift operation, saving > \$65 million annually




Benefits of the FCEV

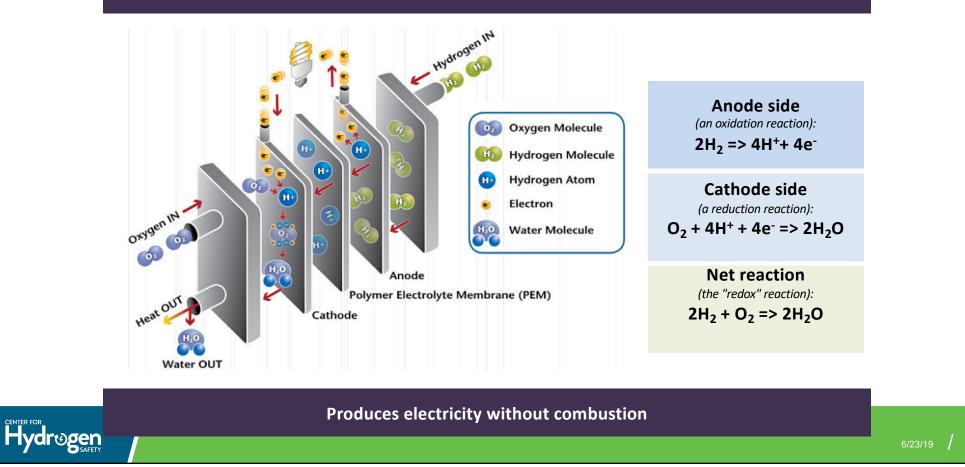


Benefits of the FCEV

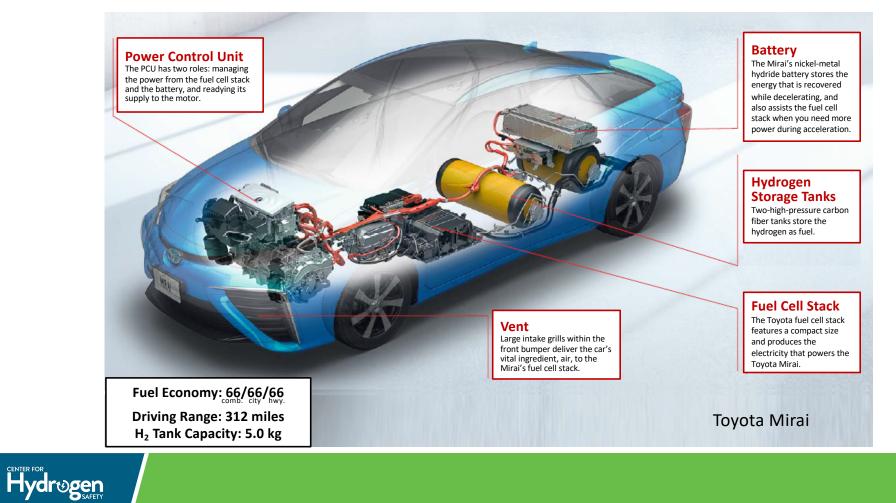


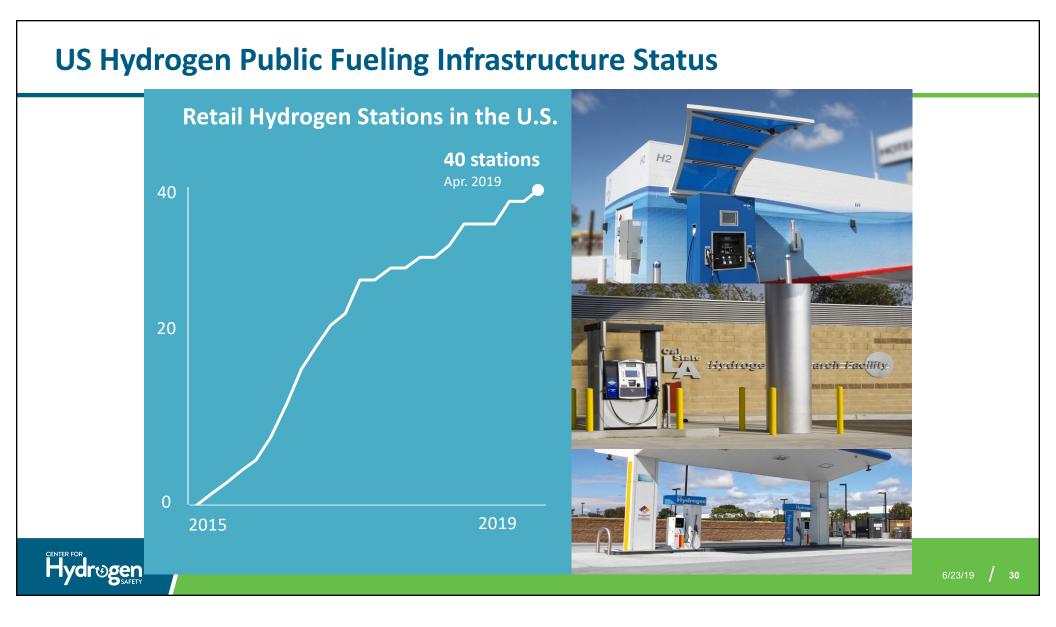
Source: US Department of Energy, Fuel Cell Technologies Office

How a Fuel Cell Works in an FCEV

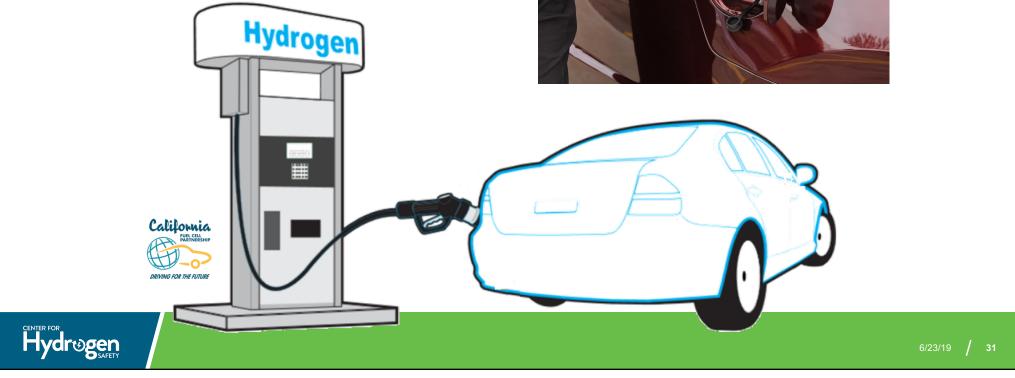


Source: Toyota Video download URL: https://h2tools.org/sites/default/files/barilo/Fuel_Cell_Animation.mp4_


6/23/19 / 27

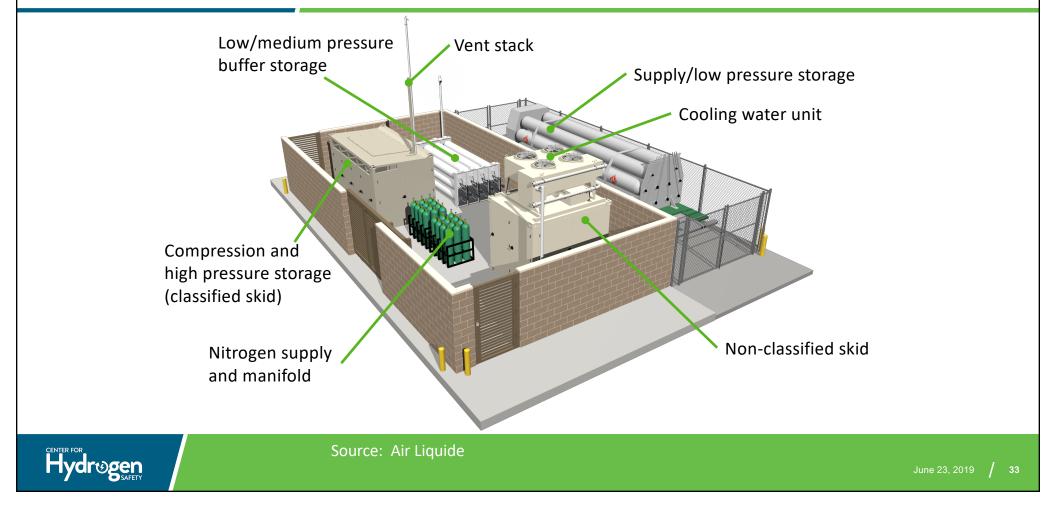

Fuel Cells 101 : PEM Fuel Cell

Relies on an *electrochemical* reaction

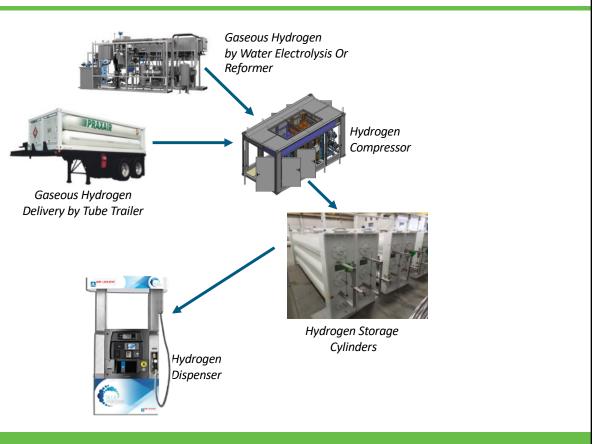


What does hydrogen refueling look like?

- Takes minutes
- Similar dispenser to gasoline
- Safe and familiar process



Example FCV Gaseous H₂ Station Configuration



Hydrogen Fueling Stations Gaseous Hydrogen Storage System Layout (Typical)

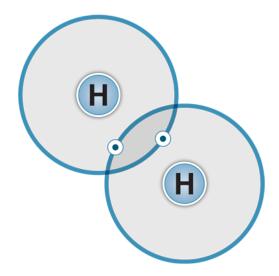
Hydrogen Fueling Stations Gaseous Hydrogen Storage

- Delivered to fueling station by trailer, or generated onsite
- Compressed and stored onsite in cylinders
- Piped to dispenser for fueling vehicles

Hydrogen Fueling Stations Liquid Hydrogen Delivery

Liquid hydrogen can be delivered to the fueling station by tanker truck, as is shown for this hydrogen and gasoline station

Photos: California Fuel Cell Partnership and Linde.


Hydrogen Properties and Behavior

Gas at ambient conditions

- Rises and disperses rapidly (14x lighter than air)
- Flammable range 4-75% in air
- Liquid at -423°F (-253°C) a cryogen
 - LH₂ stored at 50 psi in vacuum insulated tanks
 - No liquid phase in compressed gas H₂ storage

Energy content comparison :

- 1 kg of hydrogen ~ 1 gallon gasoline
- 33.3 kWh/kg hydrogen vs. 32.8 kWh/gal gasoline

Molecular Hydrogen Model: 2 protons (H+) sharing 2 electrons (e-)

Hydrogen Properties: A Comparison

	Hydrogen Gas	Natural Gas	Gasoline
Color	No	No	Yes
Toxicity	None	Some	High
Odor	Odorless	Yes (mercaptan)	Yes (benzene)
Buoyancy Relative to Air	14X Lighter	2X Lighter	3.75X Heavier
Energy by Weight	2.8X > Gasoline	~1.2X > Gasoline	43 MJ/kg
Energy by Volume	4X < Gasoline	1.5X < Gasoline	120 MJ/Gallon

Source: California Fuel Cell Partnership

June 23, 2019 **38**

Properties of Hydrogen

Description

Colorless, odorless, tasteless

General Properties

- Flammable
- Non-irritating, nontoxic, asphyxiant
- Non-corrosive
- Lightest gas, buoyant, can escape earth's gravity

Physical Properties

- GH₂ density @ NTP 0.0838 kg/m³ (1/15th air)
- GH_2 specific gravity 0.0696 (Air = 1.0)
- Viscosity 33.64 x 10⁻³ kg/m hr (1/2 air)
 - Diffusivity $1.697 \text{ m}^2/\text{hr}$ (4x NG in air)
- Thermal Conductivity 0.157 kcal/m hr K (7 x air)

Potential Hazards

- Combustion
- Pressure hazards
- Low temperature
- Hydrogen embrittlement
- Exposure and health


Demonstration of Hydrogen Flames

https://h2tools.org/sites/default/files/barilo/BurnDemo.mp4

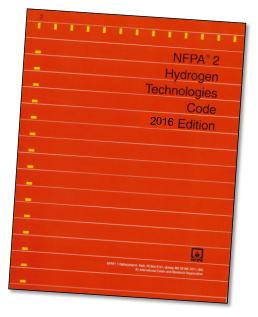
Enabling Widespread Success: Addressing Safety

- Safety issues must be addressed for successful hydrogen technology acceptance and deployment
- Safety issues can be a 'deal breaker'
- Hydrogen technology stakeholders may not be able to identify and effectively address all safety issues
- Stakeholders benefit from an independent and experienced hydrogen safety review resource involved in early design and safety planning activities

The Safety Basics

Hydrogen safety, like all flammable gas, relies on these key safety considerations:

- Eliminate hazards or define mitigation measures
- Ensure system integrity
- Provide proper ventilation to prevent accumulation
- Manage discharges
- Detect and isolate leaks
- Train personnel


Fuel cell backup power connected to a data center

Critical Infrastructure H₂ Codes & Standards

International Fire Code (IFC)

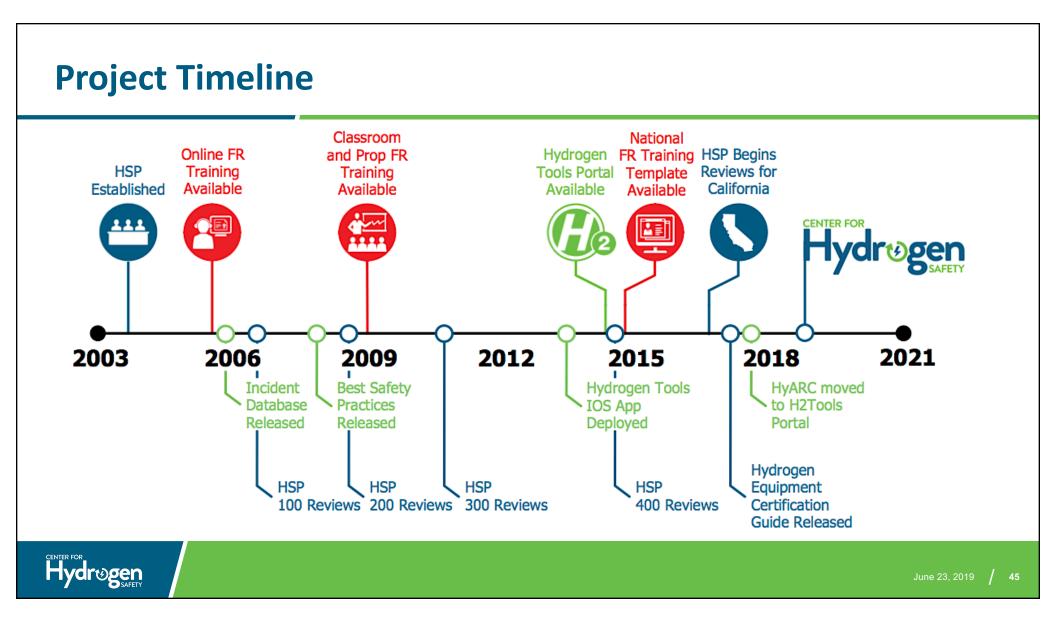
NFPA 2 Hydrogen Technologies Code

Pacific Northwest Hydrogen Safety Resources

Hydrogen Safety Panel (HSP)

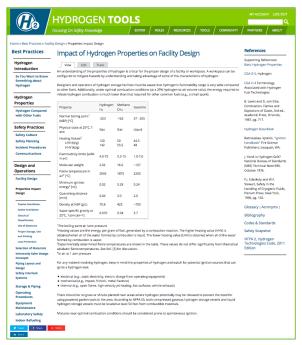
- Identify Safety-Related Technical Data Gaps
- Review Safety Plans and Project Designs
- Perform Safety Evaluation Site Visits
- Provide Technical Oversight for Other Program Areas

Hydrogen Tools Web Portal (http://h2tools.org)


- Hydrogen Facts, Training, Forums, HyARC Tools
- Hydrogen Lessons Learned, Best Practices, Workspaces

Emergency Response Training Resources

- Online Awareness Training
- Operations-Level Classroom/Hands-On Training
- National Hydrogen and Fuel Cell Emergency Response Training Resource

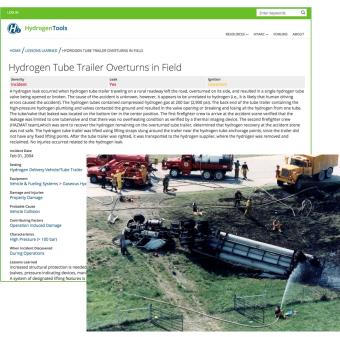

Hydrogen Tools

A Transformative Step Towards Hydrogen Adoption

H2tools.org/bestpractices ...Sharing Experience, Applying Best Practices

- Introduction to Hydrogen
 - So you want to know something about hydrogen?
- Hydrogen Properties
 - Hydrogen compared with other fuels
- Safety Practices
 - Safety culture
 - Safety planning
 - Incident procedures
 - Communications
- Design and Operations
 - Facility design considerations
 - Storage and piping
 - Operating procedures
 - Equipment maintenance
 - Laboratory safety
 - Indoor refueling of forklifts

Safety events from "H2incidents.org" illustrate what can go wrong if best practices are not followed.



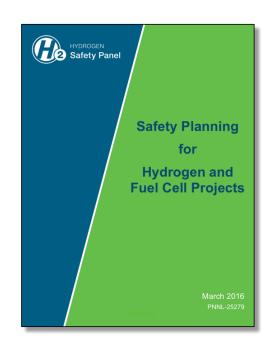
URL: http://h2tools.org/bestpractices

...Capturing the Event, Focusing on Lessons Learned

Each safety event record contains:

- Description
- Severity (Was hydrogen released?
 Was there ignition?)
- Setting
- Equipment
- Characteristics (High pressure? Low temperature?)
- Damage and Injuries
- Probable Cause(s)
- Contributing Factors
- Lessons Learned/Suggestions for Avoidance/Mitigation Steps Taken

Tube trailer rollover



URL: http://h2tools.org/lessons

Guidance for Safety Planning of H₂ Projects

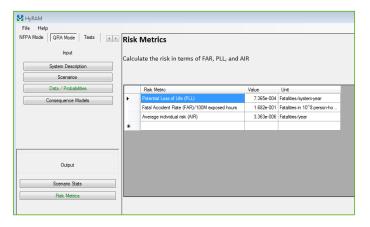
Safety planning should be an integral part of the design and operation of an H₂ system.

- Originally developed by the HSP for the U.S.
 Department of Energy in 2005
- The document provides information on safety practices for hydrogen and fuel cell projects
- The project safety planning process is meant to help identify risks and avoid potential hydrogen and related incidents.
- This document can aid in generating a good safety plan that will serve as a guide for the safe conduct of all work related to the development and operation of hydrogen and fuel cell equipment.

URL: https://h2tools.org/hsp/reviews

Hydrogen Safety Considerations Checklist

- Intended users
 - Those developing designs for hydrogen systems
 - Those involved with the risk assessment of hydrogen systems.
- While fairly inclusive, it is not possible to include all variables that need to be considered
- A hazard analysis process should include
 - Personnel who are familiar with applicable codes and standards
 - Team members with expertise in the technical aspects of the specific project

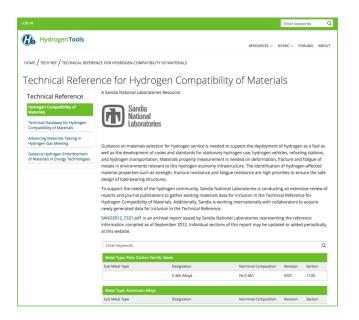

- 1	Approach	Examples of Actions
Plan the Work	Recognize hazards and define mitigation measures	Identify risks such as flammability, toxicity, asphyxiates, reactive materials, etc. Identify potential hazards from adjacent facilities and nearby activities Address components such as fitting leaks, valve failure positions (open, closed, or last), valves leakage (through seat or external), instrumentation drifts or failures, control hardware and software failures, and power outages. Consider uncommon failures of the as a check valve that does not check, relief valve stuck open, block valve stuck open or closed, and piping or equipment rupture. Consider excess flow valves/chokes to size of hydrogen leaks Define countermeasures to protect people and property. Filow applicable codes and standards.
	Isolate hazards	Store hydrogen outdoors as the preferred approach; store only small quantities indoors in well ventilated areas. Provide horizontal separation to prevent spreading hazards to/from other systems (especially safety systems that may be disabled), structures, and combustible materials. Avoid hazards caused be overhead trees, piping, power and control wiring, etc.
	Provide adequate access and lighting	Provide adequate access for activities including:
	Approach	Examples of Actions
Keep the Hydrogen in the System	Design systems to withstand worst-case conditions	Determine maximum credible pressure considering abnormal operation, mistakes made by operators, etc., then design the system to contain or relieve the pressure. Ontain: Design or select equipment, piping and instrumentation that are capable of maximum credible pressure using materials compatible with hydrogen service. Relieve: Provide relief devices that safely vent the hydrogen to prevent damaging overpressure conditions. Perform system pressure tests to verify integrity after initial construction, after maintenance, after bottle replacements, and before deliveries through transfer connections.
	Protect systems	Design systems to safely contain maximum expected pressure or provide pressure relief devices to protect agains burst. Mount vessels and bottled gas cylinders securely. Onsider that systems must berrate and be maintained in severe weather and may experience earthquakes and flood water exposures. Demobilize vehicles and carts before delivery transfers or operation. Protect agains vehicle or accidental impact and vandalism. Post warning signs.
	Size the storage appropriately for the service	Avoid excess number of deliveries/change-outs if too small. Avoid unnecessary risk of a large release from an oversized system.

URL: https://h2tools.org/sites/default/files/HydrogenSafetyChecklist.pdf

Quantitative Risk Assessment

- Developed toolkit to enable integrated probabilistic and deterministic modeling
 - Relevant H₂ hazards (thermal, mechanical)
 - Probabilistic models (traditional QRA models) & H₂-specific component data
 - H₂ phenomena (gas release, heat flux, overpressure)
- Variable Users
 - High level, generic insights (e.g., for C&S developers, regulators)
 - Detailed, site-specific insights (e.g., for AHJs, station designers)
- Currently, two interfaces (views):
 - "QRA mode" and "Physics mode"
 - Planned "performance-based design" mode for targeted analyses

First-of-its-kind software tool for integrating H₂ consequence models w/ QRA models Includes behavior models & data developed through FY12



URL: http://hyram.sandia.gov

Technical Reference for Hydrogen Compatibility of Materials

Consists of material specific chapters (as individual PDF files) summarizing mechanical-property data from journal publications and technical reports

- Plain Carbon Ferritic Steels
- Low-Alloy Ferritic Steels
- High-Alloy Ferritic Steels
- Austenitic Steels
- Aluminum Alloys
- Copper Alloys
- Nickel Alloys
- Nonmetals

URL: <u>http://h2tools.org/tech-ref/</u> technical-reference-for-hydrogen-compatibility-of-materials

H₂ Fueling Station Permitting Videos

Permitting Hydrogen Fueling Stations Part One

Permitting Hydrogen Fueling Stations Part Two: Planning and Building Considerations

Permitting Hydrogen Fueling Stations Part Three: Fire Department Regulations

Permitting Hydrogen Fueling Stations Part Four: Annual Inspections

- Gives AHJs, Project Developers, and other interested parties a quick orientation in permitting hydrogen fueling stations.
- Provides basic background information on hydrogen technologies followed by a description of the permitting process including an overview of key codes and standards.
- Contains interviews with code officials, emergency responders, and technical experts as well as footage of hydrogen stations.

center for Hydregen Safety Videos available at <u>https://h2tools.org/videos</u>

June 23, 2019 **53**

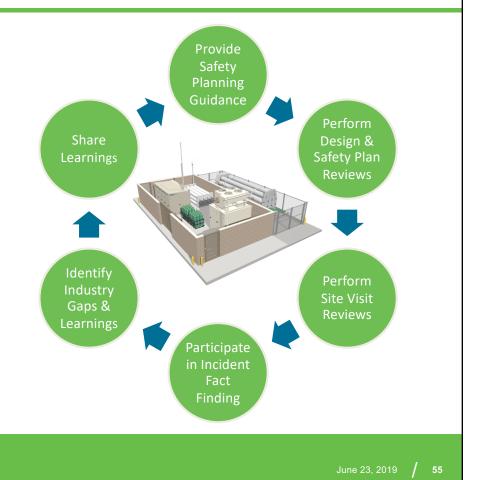
Introducing the Hydrogen Safety Panel (HSP)

Experienced, Independent, Trusted Expertise

The HSP promotes safe operation, handling, and use of hydrogen

- Formed in 2003
- 14 members with 400+ years combined experience
- Hydrogen safety reviews hydrogen fueling, auxiliary power, backup power, CHP, portable power, and lab R&D
- White papers, reports, and guides
- Provides support on the application of hydrogen codes and standards
- H₂ safety knowledge shared through the H₂ Tools Portal (h2tools.org)

Some of the fire officials and hydrogen experts that comprise the Hydrogen Safety Panel (25th meeting, 2019, New Orleans, LA)


Hydrogen Safety Panel: Objective and Activities

The purpose of the HSP is to share the benefits of extensive experience by providing suggestions and recommendations pertaining to the safe handling and use of hydrogen.

Objective: Enable the safe and timely transition to hydrogen technologies by:

- Participating in hydrogen projects to ensure safety is adequately considered
- Providing expertise and recommendations to stakeholders and assisting with identifying safetyrelated gaps, best practices and lessons learned

Hydr@gen

HSP Membership

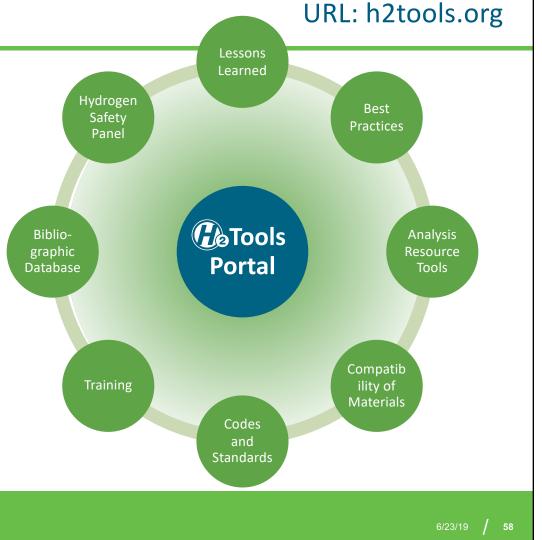
The HSP is a multidisciplinary team of engineers, code officials, safety professionals, equipment providers, and testing and certification experts. The Panel provides guidance for hydrogen projects and facilities, including design and process safety reviews, support/review of risk analyses, onsite safety presentations, and training.

Hydr: gen

Name	Affiliation
Nick Barilo, Manager	Pacific Northwest National Laboratory
Richard Kallman, Chair	City of Santa Fe Springs Fire Dept. (retired)
Harold Beeson*	WHA International, Inc.
Ken Boyce	UL
David Farese	Air Products and Chemicals
Donald Frikken	Becht Engineering
Livio Gambone	Nikola Motors
Aaron Harris	Air Liquide
Chris LaFleur	Sandia National Laboratories
Miguel Maes	NASA-JSC White Sands Test Facility
Larry Moulthrop	Proton OnSite (retired)
Spencer Quong*	Toyota Motor Corporation
Gary Stottler*	GM (retired)
Tom Witte	Witte Engineered Gases
Robert Zalosh	Firexplo

* New members 2019

Impact of the HSP	Since 2003
Serves as a non-regulatory, objective, and neutral resource	506
Sees the "big picture"	
Shares learnings	Reviews
 Identifies gaps 	
Can help reduce costs	345
 Over-engineering resulting in unnecessary features 	Projects
Delayed approvals	
 Missed safety considerations/features 	>100
A group with diverse experience can:	Presentations
 Respond with a balanced solution to questions, problems, and issues 	
 Aid in avoiding repeating costly mistakes among disparate project proponents 	12
 Help project proponents avoid industry-impacting incidents 	
 Help establish stakeholder and public confidence 	Guides



HydrogenTools

Significant hydrogen safety resources in one location

The goal of the Portal is to support implementation of the practices and procedures that will ensure safety in the handling and use of hydrogen in a variety of fuel cell applications. The portal brings together and enhances the utility of a variety of tools and web-based content on the safety aspects of hydrogen and fuel cell technologies to help inform those tasked with designing, approving or using systems and facilities, as well as those responding to incidents.

center for Hydrtygen Safety

Involvement in Hydrogen Fueling Station Rollouts

Contracted by the California Energy Commission (CEC) to support the construction of new hydrogen fueling stations through the following services

- Provided guidance for preparing safety plans
- Participated in pre-award safety consultation for applicants
- Reviewed safety plans submitted by 12 applicants to California's GFO-605
- Provided comments to the CEC in support of award decisions
- Follow-up interviews and stations tours were conducted in March 2017 to identify safety learnings from station deployments

Supporting Rollout of Hydrogen Technologies

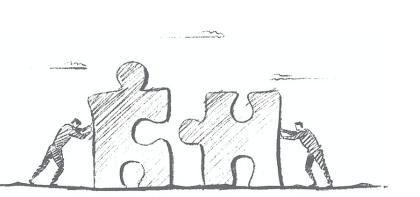
Connecticut Center for Advanced Technologies (CCAT) CY18-19

- The objectives include:
 - Raising awareness of the HSP among state/local officials and project developers
 - Establishing working relationships with key state and local organizations to enable seamless incident response and development of safety lessons learned
 - Identifying types of projects that would benefit from HSP involvement
 - Identifying methods to facilitate outside organizations paying for HSP

California Energy Commission CY19-21

- Activities will be performed in support of the California fueling structure infrastructure including renewable hydrogen production facilities
 - Provide safety planning webinars and consultations
 - Review funding opportunity applicant safety plans
 - Participate in funded project design reviews
 - Perform site safety reviews
 - Provide outreach to code officials and stakeholders
 - Review hydrogen incidents
 - Conduct post startup project team interviews

Learnings from these activities are brought back to California, DOE, and the hydrogen community

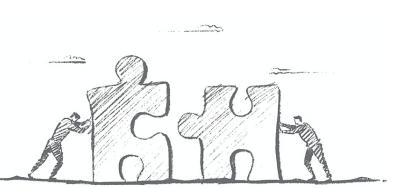


Building Blocks

While hydrogen has been used safely in industrial applications for nearly a century, a substantial expansion of its use as a fuel involves a wider and more diverse group of stakeholders

Communication of hydrogen specific safety guidance will be critical to the success of hydrogen as a part of the global energy transition

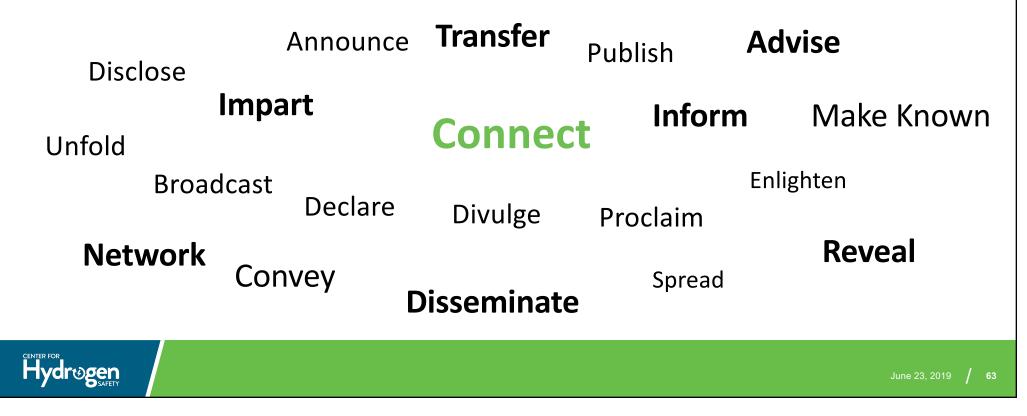
Establishing and communicating best practices from a trusted, independent safety resource is a valuable part of the hydrogen safety ecosystem



Building Blocks

While hydrogen has been used safely in industrial applications for nearly a century, a substantial expansion of its use as a fuel involves a wider and more diverse group of stakeholders

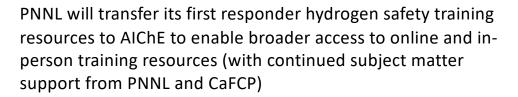
A fundamental need...


Communication of hydrogen specific safety guidance from a trusted, independent safety resource

... communicating knowledge to enable the safe and timely transition to hydrogen and fuel cell technologies

Future Direction and Sustainability

HYDROGEN


Safety Panel

Making the HSP more readily available to industry, state, and federal government agencies (national and international)

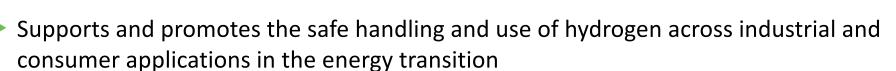
Enabling less cumbersome/time-consuming contracting efforts

AIChE* has partnered with PNNL to establish a Center for

Hydrogen Safety (CHS). CHS will expand the HSP's access to new

* AIChE is the world's leading organization for chemical engineering professionals, with more than 60,000 members from more than 110 countries. AIChE has the breadth of resources and expertise to support industries or emerging areas, such as hydrogen and fuel cell technologies.

customers by:


Safely Fueling Our Future...

...by building and enabling a global community

An AIChE Technical Community • A Global Resource On Hydrogen Safety

A global, neutral and nonprofit resource

Provides assurance that groups of experts have a common communication platform with a global scope to ensure safety information, guidance and expertise is available to all stakeholders

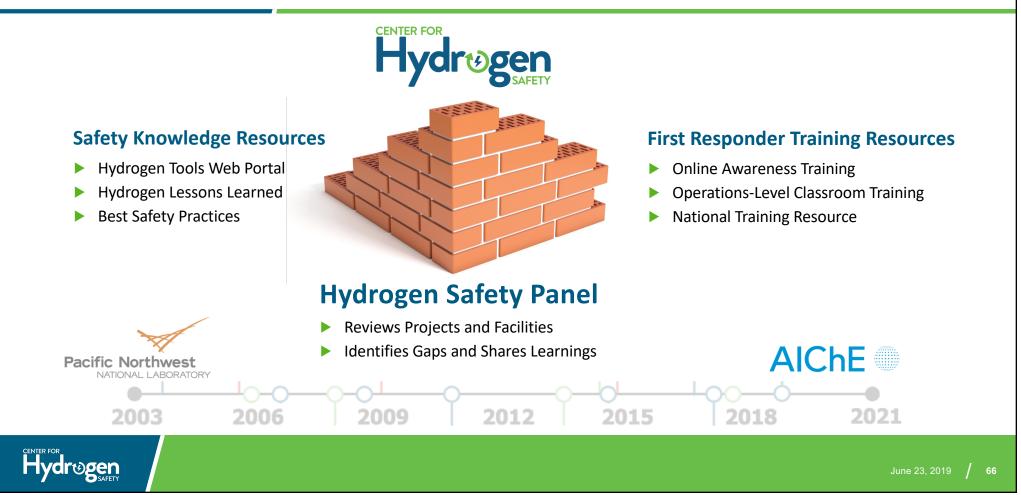
60,000+

ASIA 7,570

217

EUROPE

565


50,162

SOUTH AMERIC

1,409

Safely Fueling Our Future...

...by building on a strong foundation of resources built through collaboration

Membership Levels and Benefits

Government (\$25K USD/per year)

(((())))) Large Industry (\$15K USD/per year)

ເຖິງ Small Industry (\$5K USD/per year)

X

- University (\$2K USD/per year)
- Executive Board (\$50K USD/per year)

Interested in becoming a member? Call me or send an email to chs@aiche.org

Training and Education Resources

Coming soon...

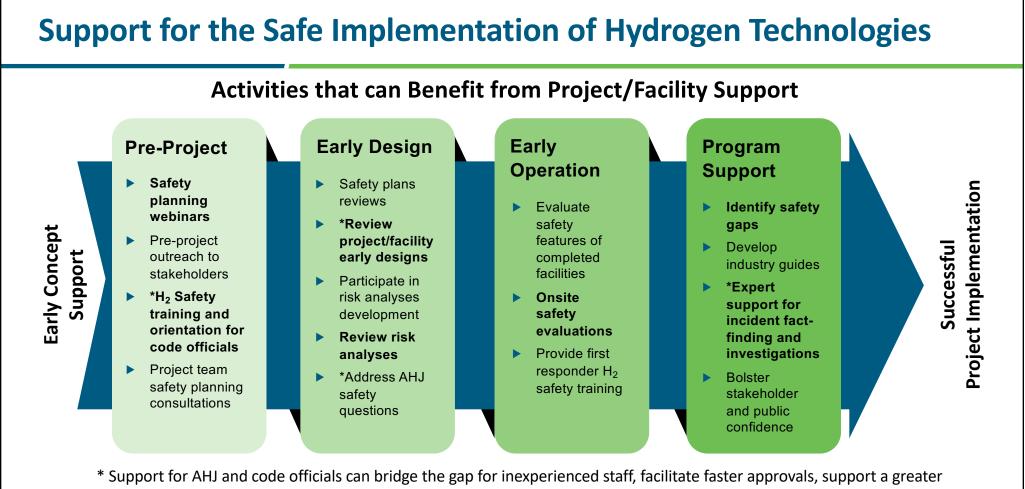
Online Training

- First Responders
- Researchers
- Technicians

Focused Webinars

- Project Safety and Safety Planning
- Researchers
- Technicians
- Others (based on customer needs)

Information Materials


- First Responders
- Public (anticipated in 2020)

Language Support

- English
- French (late 2019)
- Dutch (current First Responder)
- Japanese (legacy First Responder)

confidence in project safety and provide more technically justified safety features or alternate means and methods

Incident Response Resources

Member-only resources

- An online site sharing timely information on incidents, causes and final public reports developed by either CHS or third-parties
- Hydrogen and fuel cell technology safety fact sheets for a variety of audiences
- A guide to quickly identify what resources are available to help with your investigation and factfinding activities

Picture source: NBC Los Angeles

Hydregen

/

Safety Conferences

Spring 2020 March/April 2020 • East Asia

Fall 2020 September 2020 • Germany

CENTER FOR

Hydr

gen

Connecting a Global Community

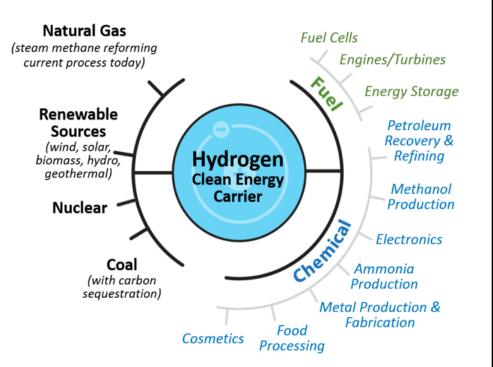
Hydregen Mark your calendars!

/

Impact of Membership

Membership will:

- Demonstrate that safety is a fundamental principal for those deploying the technology
- Ensure that neutral and trustworthy hydrogen safety resources will be sustained and have global impact
- Ensure safety is not a significant impediment to stakeholder and public acceptance of hydrogen technologies



CHS will facilitate a safe and timely transition to hydrogen and fuel cell technologies, contribute to stakeholder and public acceptance of hydrogen technology, and help assure the safe operation of hydrogen facilities

Concluding Thoughts

- The future will likely see an increase in the use of hydrogen and fuel cell technologies
- Because hydrogen as a fuel is still relatively new, best methods of handling, storage, transport, and use may not be well understood by participants
- Safe practices for production, storage, distribution, and use of hydrogen are essential for deployment of hydrogen and fuel cell technologies
- The Center for Hydrogen Safety, HSP and Hydrogen Tools portal (<u>http://h2tools.org</u>) are available to help project participants to understand and apply safe practices for successful use

Value Proposition for Utilizing the CHS/HSP

Critical assets and expertise enable the safe and timely transition to hydrogen and fuel cell technologies

- Protect public investment Utilize the Center for Hydrogen Safety (CHS), a NY based resource, to ensure public money is utilized for safe facilities
- Reduce soft costs for government agencies and stakeholders
 - Expedite permitting, titling, approvals from local authorities
 - Greater accessibility and reduced costs to utilize the PNNL HSP for state and industry organizations
- Facilitate broader stakeholder and public acceptance of hydrogen technology and facilities
 - Outreach and engagement of stakeholders
 - Educational materials

Our growing list of Members and Strategic Partners

Thanks for Your Attention!

My Contact Information:

Nick Barilo, P.E. Director of the Center for Hydrogen Safety, AIChE P.O. Box 999, MSIN K7-76 Richland, WA 99352 USA Tel: 509-371-7894 nickb@aiche.org http://www.aiche.org/chs http://h2tools.org

