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Outline 

  Natural gas: opportunities and key challenges 
  Short-term operational planning: the Sarawak 

Gas Production System 
  Design of a liquefied energy chain 
  Global optimization of algorithms 
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Natural Gas Overview 
  World natural gas demand expected to rise to 163 trillion 

cubic feet (tcf) by 2030 from 100 tcf in 20041 
  Expected to remain a key fuel in power generation and 

industrial sector over next two decades 
  Less CO2 per unit energy produced 
  Massive reserves 
  Transition to “natural gas economy” 

  Demands from new emerging technologies 
  Hydrogen economy 
  Hydrocarbon based fuel cells 
  Natural gas based chemical industry 
  Biofuels upgrading, oil sands mining and upgrading, etc. 
  Gas to liquid fuels 

1. “International Energy Outlook 2007”, Energy Information Administration, U.S. Department of Energy 
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Natural Gas Consumption 

Rate of growth in non-OECD 
economies projected to be 

double of OECD growth rate 
Consumption by Region 

Consumption by Sector 
Industrial sector accounted for  

44% consumption in 2004 



5 5 

Reserves 

  World natural gas reserves are 
estimated to be 6,183 tcf in 2007 
 Russia, Iran and Qatar account for 58% of 

total 

  An estimated 4,000 tcf remain 
undiscovered 

  Developed world will be increasingly 
relying on imports in future 

  Reserve to production ratio estimated to 
be 65 years for world 
 >100 yrs for Middle East  
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Reserves 
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Key Challenges 

  Of entire resource base, 3,000 tcf in stranded 
reserves 
  Too far from population centers or pipeline 

infrastructure 
  LNG expected to play a major role in exploiting these 

reserves (especially in Middle-East, Artic) 

  Rise of global gas market 
  LNG may account for up to 16% of global gas 

demand  by 2015 

  More than 90% of growth in production during 
next two decades from non-OECD countries 
 Strained/unreliable supply chains to developed world 
  Increasing state involvement in upstream activities 
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Key Challenges 

  Hard to exploit conventional resources 
 High cost and uncertainty 
 New technology required 

  Unconventional resources  
  Tight sands, shale and coalbed methane 

  Environmental concerns 
 Managing carbon output of natural gas processes 
  Impact of unconventional production 

  Long delays in infrastructure development with 
fluctuating demands and prices 
 High capital cost and specificity of infrastructure 
  Investment risk 
 Complex ownership and contractual agreements to 

manage risk 
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Natural Gas Supply Chain 
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Short-term Operational Planning 
Sarawak Gas Production System 

1. Ajay Selot, L.K. Kuok, M. Robinson, T.L. Mason, Paul I. Barton. “A short-term operational planning model for 
natural gas production systems.” AIChE Journal,54(2):495-515, 2008.  
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Operational Planning 

  Short-term asset management 
 Optimize operation while obeying all constraints 
  Identify bottlenecks in network and facilities 
 Maintenance scheduling 
 Response to failures: real-time decision support 
 Couple with long-term asset management models 

  Blending and intelligent routing 
  Integrating upstream systems with LNG/LPG/

GTL processing 
  By-products optimization 
  Commercial objectives and rules to enhance 

value from system operations 
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Sarawak


South China Sea


Bintulu


Sarawak Gas Production 
System 

The SGPS 
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Sarawak Gas Production 
System 

•  Supplies LNG to Japan and South Korea 
•  NGL and LPG as by-products  
•  A total production of 4 billion scf/day 
•  Annual revenue of the order of $5 billion 
•  Approximately 4% of Malaysia’s GDP 
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System Features 
  Multi-party ownership with a single 

operator 
  Complex production-sharing contracts 

  Gas quality specifications - gas sales 
agreement 
  LNG customer requirements 
  LNG plant operations 
  Gas concentration must be tracked in network 

  Nonlinear pressure-flowrate relationships 
  Actuators quite limited in the network 
  Must predict gas flow over 100+ km 

  Multiple objectives 
  By-products are additional revenue generators 
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Challenges 
  Upstream planning optimization problems are highly 

nonlinear (and nonconvex) 
  Nonconvex optimization cannot be solved reliably by 

local optimization methods (e.g., SQP) 
  Representation of complex Production-Sharing Contract 

(PSC) rules requires logical constraints 
  Cannot be handled by continuous optimization method: MINLP 

formulation 

  Hence the opportunity requires state-of-the-art 
deterministic global optimization algorithms 
  Worst-case exponential run-time 
  Crucial interplay between model, problem structure and 

algorithms 
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Model Overview  
  Model formulated from perspective of upstream 

system operator 
  Decision support tool for system operators 

between events 
  Plan and predict 

  Production rates from each well 
  Corresponding pressure-flowrate, composition 

distribution 
  State of production-sharing contracts 

  Planning period: 2-10 weeks 
  Operational objectives 

  Production rates: Gas, Natural Gas Liquids (NGL), 
Specified fields 
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Model Overview 
•  Infrastructure model 

(physical model of the system)  
 The network model 
 Well performance model 
 Species balances 

•  Contractual model  
–  Gas quality specifications 
–  Production sharing contracts 

(PSC) model 
–  Operational Rules 

Coupling constraints 
(at demands and 

sources) 

•  Blending/
Intelligent routing 

•  Nonlinear pressure-
flowrate 
relationships 

•  Bilinear constraints 
at mixers or 
splitters


•  An embedded 
framework for 
representing 
complicated PSC, 
commercial/
economic and 
operational rules 
and customer 
requirements
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PSC Network Representation 
Supply node	



Demand node	



Levels of excess/deficit
Inter contract transfer	
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Hierarchical Multiobjective 
Case Study 

 There are multiple objectives for system 
operation 

 Moreover, a clear hierarchy of objectives 
  Maximize dry gas delivery 

»  Contractual obligation 

  Maximize natural gas liquids (NGL) 
»  Additional revenue generator 

  Prioritization of some fields (maximize production) 
»  Link with long-term planning models 

 Multiple solutions with same maximal dry gas 
delivery 
  Can be exploited to obtain a win-win situation 

without trade-offs 
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Hierarchical Multiobjective 
Case Study - BARON 

Dry gas 
production NGL Priority 

fields Time 

MMscfd bpd MMscfd s 

Dry gas 
production 3,333 134,036 224 9363 

NGL 3,333 137,433 
(+2.5%) 224 75 

Priority fields  3,333 137,433 224/294[1] >705,379 

[1] Not Converged
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Design of a Liquefied Energy 
Chain 

with Prof. Truls Gundersen (NTNU) 
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Offshore Process 
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Onshore Process 
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The ExPAnD Methodology 
(Extended Pinch Analysis and Design) 

  Combines Pinch Analysis (PA), Exergy Analysis (EA) and Optimization/
Math Programming (OP) 

  PA for minimizing external Heating and Cooling 

  EA for minimizing Irreversibilities (thermodynamic losses) 

  OP for minimizing Total Annual Cost 

  Problem Definition 

  “Given a Set of Process Streams with Supply State 
(Temperature, Pressure and the resulting Phase) and a 
Target State, as well as Utilities for Heating and Cooling,  
Design a System of Heat Exchangers, Expanders and 
Compressors in such a way that the Irreversibilities (or 
alternatively, utility- or total annual costs) are minimized.” 
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The ExPAnD Methodology 
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i=H1 i=H2
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  Manipulation of the pressure 
for the process streams in a 
heat exchanger network may 
reduce the total irreversibilities 

  The optimization formulation 
can suggest a reasonable initial 
design for realistic problems 

The ExPAnD Methodology 
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Offshore Process 
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Global Optimization of 
Algorithms 
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Nonconvex Optimization 

global minimum


local minimum


local maximum


Standard optimization techniques cannot 

distinguish between suboptimal local minima




32 32 

Motivation 

  Global optimization of large nonconvex NLPs (MINLPs) 
with special structure: 

  Consider a partition of decision variables w as (x,y) 

  The system of equations in y given a  

  

min
w∈n

f (w)

g(w)≤0
h(w)= 0
w∈W⊂n

  

min
(x,y)∈n

f (x,y)

g(x,y)≤0
hi(x,y)= 0, i =1…m

x∈X⊂n−m, y∈Y⊂m

 ̂x∈X
hi(x̂,y)= 0, i =1…m
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Motivation 
  Assume that system of equations has special features 

  System can be solved for 
  A non-iterative algorithm for solution is possible 

  Mathematical programs where objective function and 
constraints are algorithms 

  Advantageous when n and m are large but n-m is small 
  Global optimization algorithms have worse-case 

exponential run-time in number of variables 
  Systems which have few inputs and outputs but a large 

number of internal states 
»  Chemical unit operations, biological systems, networks 

  

min
x∈n−m

f (x,y(x))

g(x,y(x))≤0
x∈X⊂n−m

 ∀x̂∈X
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Motivation 

  Algorithms in this context: 
  Arbitrary complex calculation sequences as long as each 

step is factorable and relaxations/subgradients/derivatives 
are available  

  Non-iterative procedures: NO if-then-else statements and 
conditional loops (at present) 

  Computer evaluated functions  

  Global optimization of NLPs/MINLPs using 
Branch & Bound – solve a sequence of 
subproblems to bound the solution value 
  Need a lower bounding procedure to bound such computer 

evaluated functions 
  An upper bounding approach 

  A reduced-space global optimization method 
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Convex Relaxation 

ubd


lbd
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Branch 
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Branch, Bound 
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lbd1
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lbd2




38 38 

Branch, Bound, and Fathom 

ubd1
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McCormick Relaxation of 
Algorithms 

  Computer procedure for evaluating factorable functions 
  Each step is an elementary operation 
  Propagate convex underestimators, concave overestimators and 

corresponding subgradients for each elementary operation 
»  Known intrinsic convex/concave envelopes 
»  McCormick composition theorem 
»  Rules for binary and unary operations 

  Combine with ideas from automatic differentiation (AD)1 

  Operator overloading (simpler but slower) 
  Source code transformation (quite complicated but faster) 

  Implemented in libMC2 

  Using operator and function overloading in C++ 
  Use an object having fields to store necessary values: over- and 

under- estimators, corresponding subgradients 
  Overload intrinsic functions - known envelopes 
  Propagate bounds using interval arithmetic 
  Propagate convex/concave relaxations and subgradients 

1.  Alexander Mitsos, Benoit Chachuat, Paul I. Barton.  “McCormick-Based Relaxation of Algorithms.” In press: SIAM Journal 
on Optimization, 2008 

2.  Benoit Chachuat. “libMC: A numeric library for McCormick relaxation of factorable functions.” http://yoric.mit.edu/libMC, 
2008. 
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Lower Bounding Approach 

  Use libMC to generate relaxations 
  Relaxations produced by McCormick theory 

may be not be differentiable 
  Nonsmooth convex lower bounding program 

  Nonsmooth bundle method can be used 
directly 
  However, slow convergence and non-robust 

implementations 

  Instead use bundle method as a linearization 
heuristic to generate LP relaxations 
  LP methods are reliable and guarantee an “answer” 
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Application to Gas Networks 

  Production infrastructure model1 - nonconvex NLP 
  759 variables with 663 equality constraints 
  Only 96 variables in the reduced problem in the most 

optimistic scenario 

  Hide internal network variables from the optimizer 
  Internal node pressures, arc volumetric and species molar 

flowrates, facility states  

  Fast calculation in sequential mode while 
traversing the network 
  Source to sink calculation 
  Non-iterative 

  Incorporate all equality constraints into calculation 
procedure  

1. Ajay Selot, L.K. Kuok, M. Robinson, T.L. Mason, Paul I. Barton. “A short-term operational planning model for 
natural gas production systems.” AIChE Journal,54(2):495-515, 2008.  
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Calculation Sequence 

  Three types of 
variables: 
  Input variables –

Production-rate at 
wells, selected 
pressures, split 
fractions 

»  Manipulated by 
optimizer   

  Internal Variables - 
Network state variables 

  Output variables – 
Objective function and 
constraints, e.g., 
delivery amount and 
pressure, qualities 

  Apply a transformation 
on pressure variables: 

P̂ = P2
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Case Study A 

  14 wells, 3 fields, 1 demand 
  19 variables in reduced NLP 
  ~219 variables in non-reduced NLP 

  Demand specifications 
  Upper and lower delivery pressures 

  Solved to 2% relative gap in 12 CPUs 
  30.42 million m3 per day of delivery 
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Case Study B 

  27 wells, 5 fields, 1 demand 
  37 variables in reduced NLP 
  433 variables in non-reduced NLP 

  Demand specifications 
  Upper and lower delivery pressures  
  H2S, CO2 quality 

  Solved to 3% relative gap in 3,208 CPUs 
  73.83 million m3 per day of delivery 
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Concluding Thoughts 

  Natural gas will continue to grow in 
importance in the future 

  Optimization-based planning and design 
tools can lead to systematic decision-
making for investors, asset developers 
and operators 
 Short-term and long-term 

  Novel natural gas based processes and 
value chains will be important for 
managing carbon outputs in industrial, 
transportation and power sectors 
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