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Outline

+ Natural gas: opportunities and key challenges

¢ Short-term operational planning: the Sarawak
Gas Production System

¢ Design of a liquefied energy chain
¢ Global optimization of algorithms
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Natural Gas Overview

¢ World natural gas demand expected to rise to 163 trillion
cubic feet (tcf) by 2030 from 100 tcf in 20041

¢ Expected to remain a key fuel in power generation and
industrial sector over next two decades
» Less CO, per unit energy produced
» Massive reserves
» Transition to “"natural gas economy”
¢ Demands from new emerging technologies
» Hydrogen economy
» Hydrocarbon based fuel cells
» Natural gas based chemical industry

» Biofuels upgrading, oil sands mining and upgrading, etc.
» @Gas to liquid fuels

1. “"International Energy Outlook 2007"”, Energy Information Administration, U.S. Department of Energy
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Natural Gas Consumption
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Reserves

¢ World natural gas reserves are
estimated to be 6,183 tcf in 2007

» Russia, Iran and Qatar account for 58% of
total

¢ An estimated 4,000 tcf remain
undiscovered

¢ Developed world will be increasingly
relying on imports in future

¢ Reserve to production ratio estimated to
be 65 years for world

» >100 yrs for Middle East
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Key Challenges

¢ Of entire resource base, 3,000 tcf in stranded
reserves

» Too far from population centers or pipeline
infrastructure

» LNG expected to play a major role in exploiting these
reserves (especially in Middle-East, Artic)
+ Rise of global gas market
» LNG may account for up to 16% of global gas
demand by 2015
¢ More than 90% of growth in production during
next two decades from non-OECD countries
» Strained/unreliable supply chains to developed world
» Increasing state involvement in upstream activities
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Key Challenges

¢ Hard to exploit conventional resources
» High cost and uncertainty
» New technology required

¢ Unconventional resources
» Tight sands, shale and coalbed methane

¢ Environmental concerns
» Managing carbon output of natural gas processes
» Impact of unconventional production

¢ Long delays in infrastructure development with
fluctuating demands and prices
» High capital cost and specificity of infrastructure
» Investment risk

» Complex ownership and contractual agreements to
manage risk
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Natural Gas Supply Chain
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Short-term Operational Planning
Sarawak Gas Production System

1. Ajay Selot, L.K. Kuok, M. Robinson, T.L. Mason, Paul I. Barton. "A short-term operational planning model for
natural gas production systems.” AIChE Journal, 54(2):495-515, 2008. )



Ul L

Operational Planning

¢ Short-term asset management
» Optimize operation while obeying all constraints
» Identify bottlenecks in network and facilities

» Maintenance scheduling
» Response to failures: real-time decision support
» Couple with long-term asset management models

¢ Blending and intelligent routing

¢ Integrating upstream systems with LNG/LPG/
GTL processing

¢ By-products optimization

¢ Commercial objectives and rules to enhance
value from system operations

11
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I'lir Sarawak Gas Production
System
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I"lir Sarawak Gas Production
System
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System Features

¢ Multi-party ownership with a single
operator
» Complex production-sharing contracts
o Gas quality specifications - gas sales
agreement
» LNG customer requirements
» LNG plant operations
» Gas concentration must be tracked in network
¢ Nonlinear pressure-flowrate relationships
» Actuators quite limited in the network
» Must predict gas flow over 100+ km

¢ Multiple objectives
» By-products are additional revenue generators

14
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Challenges

¢ Upstream planning optimization problems are highly
nonlinear (and nonconvex)

¢ Nonconvex optimization cannot be solved reliably by
local optimization methods (e.g., SQP)

¢ Representation of complex Production-Sharing Contract
(PSC) rules requires logical constraints
» Cannot be handled by continuous optimization method: MINLP
formulation
¢ Hence the opportunity requires state-of-the-art
deterministic global optimization algorithms
» Worst-case exponential run-time

» Crucial interplay between model, problem structure and
algorithms

15
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Model Overview

¢

Model formulated from perspective of upstream
system operator

Decision support tool for system operators
between events

Plan and predict

» Production rates from each well

» Corresponding pressure-flowrate, composition
distribution

» State of production-sharing contracts
Planning period: 2-10 weeks

Operational objectives

» Production rates: Gas, Natural Gas Liquids (NGL),
Specified fields

16



Model Overview

-

K- Infrastructure model

(physical model of the system)
» The network model

» Well performance model

» Species balances )

Coupling constraints
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i Hierarchical Multiobjective [IS=L
Case Study

@ There are multiple objectives for system
operation

€ Moreover, a clear hierarchy of objectives

» Maximize dry gas delivery
» Contractual obligation

» Maximize natural gas liquids (NGL)
» Additional revenue generator

> Prioritization of some fields (maximize production)
» Link with long-term planning models
€ Multiple solutions with same maximal dry gas
delivery

» Can be exploited to obtain a win-win situation
without trade-offs

19



I'lir Hierarchical Multiobjective

Case Study - BARON
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Design of a Liquefied Energy
Chain

with Prof. Truls Gundersen (NTNU)

21
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The Liquefied Energy Chain

- The full Liquefied Energy Chain h
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Offshore Process
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Onshore Process
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The ExXPAnND Methodology =

(Extended Pinch Analysis and Design)

¢ Combines Pinch Analysis (PA), Exergy Analysis (EA) and Optimization/
Math Programming (OP)
» PA for minimizing external Heating and Cooling
» EA for minimizing Irreversibilities (thermodynamic losses)

» OP for minimizing Total Annual Cost

¢ Problem Definition
> "Given a Set of Process Streams with Supply State
(Temperature, Pressure and the resulting Phase) and a
Target State, as well as Utilities for Heating and Cooling,
Design a System of Heat Exchangers, Expanders and
Compressors in such a way that the Irreversibilities (or
alternatively, utility- or total annual costs) are minimized.”

26
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The ExXPAND Methodology
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The ExXPAND Methodology

¢ Manipulation of the pressure
for the process streams in a
heat exchanger network may
reduce the total irreversibilities

¢ The optimization formulation
can suggest a reasonable initial
design for realistic problems
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Offshore Process
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Global Optimization of
Algorithms

30



Nonconvex Optimization

f(@)

/

local minimum

global minimum —

I
Standard optimization techniques cannot

distinguish between suboptimal local minima

31



Ul L

Motivation

+ Global optimization of large nonconvex NLPs (MINLPs)
with special structure:

L fxy)
g(x,y)<0

h(x,y)=0, i=1...m
xeXCR"Mm yeYcCR™

¢ Consider a partition of decision variables w as (x,y)
¢ The system of equations in y given a Xe X

hRy)=0, i=1...m

32
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Motivation

¢ Assume that system of equations has special features
> System can be solved for VXeX
> A non-iterative algorithm for solution is possible
¢ Mathematical programs where objective function and
constraints are algorithms

min  f(X,y(x))

xeRn—m

g(x,y(x))<0
xe X cC Rrm

¢ Advantageous when n and m are large but n-m is small

» Global optimization algorithms have worse-case
exponential run-time in number of variables

» Systems which have few inputs and outputs but a large
number of internal states

» Chemical unit operations, biological systems, networks

33
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Motivation

¢ Algorithms in this context:

» Arbitrary complex calculation sequences as long as each

step is factorable and relaxations/subgradients/derivatives
are available

> Non-iterative procedures: NO if-then-else statements and
conditional loops (at present)

» Computer evaluated functions

+ Global optimization of NLPs/MINLPs using
Branch & Bound - solve a sequence of
subproblems to bound the solution value

> Need a lower bounding procedure to bound such computer
evaluated functions

» An upper bounding approach
¢ A reduced-space global optimization method

34
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Convex Relaxation
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Branch

f(@)
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Branch, Bound
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Branch, Bound, and Fathom
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Algorithms

¢ Computer procedure for evaluating factorable functions

>
>

Each step is an elementary operation

Propagate convex underestimators, concave overestimators and
corresponding subgradients for each elementary operation

» Known intrinsic convex/concave envelopes
» McCormick composition theorem
» Rules for binary and unary operations

¢ Combine with ideas from automatic differentiation (AD)!

>
>

Operator overloading (simpler but slower)
Source code transformation (quite complicated but faster)

¢ Implemented in libMC2

>
>

>
>
>

Using operator and function overloading in C++

Use an object having fields to store necessary values: over- and
under- estimators, corresponding subgradients

Overload intrinsic functions - known envelopes
Propagate bounds using interval arithmetic
Propagate convex/concave relaxations and subgradients

1. Alexander Mitsos, Benoit Chachuat, Paul I. Barton. “McCormick-Based Relaxation of Algorithms.” In press: SIAM Journal
on Optimization, 2008
2. Benoit Chachuat. “libMC: A numeric library for McCormick relaxation of factorable functions.” http.//yoric.mit.edu/libMC,

2008.

39
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Lower Bounding Approach

¢ Use IibMC to generate relaxations

¢+ Relaxations produced by McCormick theory
may be not be differentiable
» Nonsmooth convex lower bounding program

¢ Nonsmooth bundle method can be used
directly

» However, slow convergence and non-robust
implementations

¢ Instead use bundle method as a linearization

heuristic to generate LP relaxations
» LP methods are reliable and guarantee an “answer”

40
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Application to Gas Networks

¢ Production infrastructure model! - nonconvex NLP
» 759 variables with 663 equality constraints

» Only 96 variables in the reduced problem in the most
optimistic scenario

+ Hide internal network variables from the optimizer

» Internal node pressures, arc volumetric and species molar
flowrates, facility states

¢ Fast calculation in sequential mode while
traversing the network
» Source to sink calculation
» Non-iterative

¢ Incorporate all equality constraints into calculation
procedure

1. Ajay Selot, L.K. Kuok, M. Robinson, T.L. Mason, Paul I. Barton. "A short-term operational planning model for
natural gas production systems.” AIChE Journal,54(2):495-515, 2008. 1



Calculation Sequence

¢ Three types of
variables:

» Input variables -
Production-rate at
wells, selected

ressures, split

ractions

» Manipulated by
optimizer

» Internal Variables -
Network state variables

» Output variables -
Objective function and
constraints, e.qg.,
delivery amount and
pressure, qualities

¢ Apply a transformation
on pressure variables:

P=P2

sO

TO

SE
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Case Study A

\

M3

N

SE

/o 14 wells, 3 fields, 1 demand
> 19 variables in reduced NLP

¢ Demand specifications

> ~219 variables in non-reduced NLP

> Upper and lower delivery pressures
¢ Solved to 2% relative gap in 12 CPUs
\o 30.42 million m3 per day of delivery /
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Case Study B
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K 27 wells, 5 fields, 1 demand

-

» 37 variables in reduced NLP
> 433 variables in non-reduced NLP

¢ Demand specifications

» Upper and lower delivery pressures
» H,S, CO, quality

¢ 73.83 million m3 per day of delivery

¢ Solved to 3% relative gap in 3,208 CPUs
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Concluding Thoughts

+ Natural gas will continue to grow in
importance in the future

¢ Optimization-based planning and design
tools can lead to systematic decision-
making for investors, asset developers
and operators
» Short-term and long-term

¢ Novel natural gas based processes and
value chains will be important for
managing carbon outputs in industrial,
transportation and power sectors

46
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