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 Popularized in the late 70s and early 80s in refineries
o Standard APC method for refineries and petrochemical plants
4500+ reported industrial applications (Yr. 2000)

e Many vendors marketing software and engineering service

—Aspen Tech, Honeywell, Invensys, etc.
« Strong theoretical basis and systematic design for stability and performance



Some Key Features

Computer based: Sampled-data control

Model based: Requires a dynamic process model
(fundamental or empirical)

Feedback Update: Model updated using on-line
measurements.

Predictive: Makes explicit prediction of the future
time behavior of CVs within a chosen window.
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Some Key Features(2)

e Optimization Based: Performs optimization (numerical
search) on-line for optimal control adjustments.
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No explicit form of control law — just model, objective
function, and constraints are specified.

* Integrated constraint handling and economic optimization
with regulatory and servo control.

* Receding Horizon Control: Repeats the prediction and
optimization at each sample time step to update the optimal
Input trajectory after a feedback update.



Analogy to Chess Playing

his move

Opponent
(The Disturbance)

\J
|

(The Controller)

—/

The Opponent’s
Move

New State



Industrial Use of MPC




Industrial Use of MPC

Some trial of computer based control during 50s-60s (e.g.,
Standard Oil / IBM).

Reappeared at Shell Oil and other refineries during late 70s
and early 80s. — easier, cheaper implementation enabled by
advances in microprocessors.

Various commercial software
Tens of thousands of worldwide installations

Predominantly in the oil and petrochemical industries but
the range of applications is expanding.

Models used are predominantly empirical models
developed through plant testing.

The technology is not only for multivariable control, but
for most economic operation within constraint boundaries.




Result of a Survey in 1999 (Qin and Badgwell)

Area Aspen Honeywell Adersa’ Invensys | SGS? | Total
Technology Hi-Spec
Refining 1200 480 280 25 1985
Petrochemicals 450 80 - 20 550
Chemicals 100 20 21 144
Pulp and Paper 18 50 - - 68
Air & Gas - 10 - - 10
Utility . 10 - 4 14
Mining/Metallurgy 8 6 7 16 37
Food Processing - - 41 10 51
Polymer 17 - - - 17
Furnaces - - 42 3 45
Aerospace/Defense - - 13 - 13
Automotive - - T - T
Unclassified 40 40 1045 26 450 | 1601
Total 1833 696 1438 125 450 | 4542
First App. DMC:1985 PCT:1984 IDCOM:1973
IDCOM-M:1987 | RMPCT:1991 | HIECON:1986 1984 1985
OPC:1987
Largest App 603x283 225x85 - 31x12 -




Linear MPC Vendors and Packages

e Aspentech
— DMCplus
— DMCplus-Model

e Honeywell
— Robust MPC Technology (RMPCT)

o Adersa
— Predictive Functional Control (PFC)
— Hierarchical Constraint Control (HIECON)
— GLIDE (ldentification package)

« MDC Technology (Emerson)
— SMOC (licensed from Shell)
— Delta V Predict

* Predictive Control Limited (Invensys)
— Connoisseur

- ABB
— 3d MPC



Result of A Survey for Nonlinear MPC (Qin and Badgwell)

Area Adersa Aspen Continental | DOT Pavilion [ Total
Technology Controls Products | Technologies

Air and Gas 18 18
Chemicals 2 15 5 22
' Food Processing 9 9
Polymers 1 5 15 21
Pulp & Paper 1 1
Refining 13 13
Utilities 5 2 7
Unclassified 1 1 2
Total 3 6 36 5 43 93




Reason for Popularity(1)

 MPC provides a systematic, consistent, and integrated
solution to process control problems with complex

features:

— Delays, inverse responses and other complex dynamics.
— Strong interactions (e.g., large RGA)
— Constraints (e.g., actuator limits, output limits)
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Advantages of MPC over Traditional APC

 Integrated solution
— Automatic constraint handling
— Feedforward / feedback control
— No need for decoupler or delay compensation

« Efficient Utilization of degrees of freedom
— Can handle nonsquare systems (e.g., more MVs and CVs)
— Assignable priorities, ideal settling values for MVs

« Consistent, systematic methodology

* Realized benefits
— Higher on-line times
— Cheaper implementation
— Easier maintenance



Reason for Popularity(2)

« Emerging popularity of on-line optimization
* Process optimization and control are often conflicting

objectives
— Optimization pushes the process to the boundary of constraints.
— Quality of control determines how close one can push the process to
the boundary.

 Implications for process control
— High performance control is needed to realize on-line optimization.

— Constraint handling is a must.

— The appropriate tradeoff between optimization and control is time-
varying and is best handled within a single framework

\

Model Predictive Control



Conflict / Synergy Between Optimization and Control

Limit
Safety
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Target
[ L
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Bi-Level Optimization Used in MPC

Steady-State Optimization Economics Based Objective
(LP) (Maximum profit or
_ _ throughput, minimum utility)
Optimal setting $ Control Based Constraints
values for the Steady-state
Inputs and outputs Prediction Model
(setpoints) v Minimization of Error

(=Setpoint — Output and Input)

Dynamlc Optlmlzatlon Constraints on actuator limits

(QP) and safety-sensitive variables.
A
New
Adjustments to Measurements
setpoints of low (Feedback Update)

level loops or
control valves



New Operational Hierarchy and Role of MPC

l wction act , Large-scale (e.g,
/plantwide)optimization
Fiahk:Te Optemization s Involving rigorous

nonlinear models

, i, consiaint
’ (AspenPlus)
< , Model Predictive Control ~fins
lower-level loops

for
A [ o |

Move the plant to the current optimal condition fast
and smoothly w/o violating constraints
Local optimization + control



An Exemplary Application(1)
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An Exemplary Application(2)
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Linear MPC



Popular Linear Model Structures

Finite Impulse Response Model

y(k)=hu(k=-1)+---+ hyu(k—m)

e Truncated Step Response Model
x(k+)=M,x(k)+ S Au(k)
—

shift Step response

e Transfer Function Model

y(k)=aylk-)+--+a ylk—n)+bu(k-1)+---+b u(lk—m) =
bg +etbg "

. G(q) =
State Space Model (9) l—agqi——ag”

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)



Key: Prediction Equation
o Step Response Model

Future input

Predicted future The “state” stored in moves
output samples dynamlc ‘memory (to be decided)
Y kalk N (k) Au(k)
= [+ Q"

. T :
yk+p|k /m _Au (k Tp _1)_
Dynamic Matrices )

(madeofs_te_p / ] _e(k)_

response coefﬂClents)\‘ 0 : N
A }K_ 1) 0 ( k) ™ Feedback Error
L P 1 L N Correction

Feedforward term: new measurement e(k)=y,(k)—y(k)
(Assume Ad(k+1)=...= A d(k+p-1)=0)




Prediction Equation: General

* Regardless of model form, one gets the prediction
equation in the form of

Y k+1lk

_yk+p|k

J

v (k)

= L'x(k)+ L'Ad (k) + Le(k) + L'

knownYE b(k)

e Assumptions

— Measured DV (d) remains constant at the current value
of d(k)
— Model prediction error (e) remains constant at the
current value of e(k)

Au(k)

Au(k+p-1)

—

AU (k)



Measurement Correction of State
State: Y
Compact representation

Of the past input and
measurement record

Previous State
(in “Memory”)

State Update

New Input Move
(Just Implemented)

Measurement
Correction

Feedback / Feedforward
Prediction Model LI Measurements

for Future Outputs

!

To Optimization

Prediction l

Future Input Moves
(To Be Determined)




State Update Equation

x(k+1) = Ox(k)+T"Au(k) +T?Ad (k)
+ K (y,, (k) —Ex(k))

o K is the update gain matrix that can be found in
various ways

— Pole placement. Not so effective with systems with
many states (most chemical processes)

— Kalman filtering: Requires a stochastic model of form

x(k +1) = Ox(k) + T Au(k) + T Ad (k) +w(k)

y(k)=Zx(k) evk)-—

White noises of known covariances
Effect of unmeasured disturbances and noise



Prediction Equation

Additional measurement correction NOT needed here!

Contains past feedback measurement corrections

ECD_/_

x(k) +Q"

Au(k)

=D Au(k+p-1)




What Are the Advantages of Using a

State Estimator (Observer)?

e Can handle unstable processes
— Integrating processes, run-away processes

e Cross-channel update

— More effective update of output channels with delays or

measurement problems based on other channels.
Early update through

Unmeasured .yl modeled correlation

inputs
| Process Delays,
Measured inputs Measurement Difficulties, }— y?
Slow Sampling

o Systematic handling of multi-rate measurements

o Optimal extrapolation of output error and filtering
of noise (based on the given stochastic system model)




Objective Function

« Minimization Function: Quadratic cost (as in DMC)

p m—1
V() =D Dok = V)N Qi =)+ D A (k+i) A" Au(k +1)
i=1 i=0

— Consider only m input moves by assuming Au(k+j)=0 for
j=m

— Penalize the tracking error as well as the magnitudes of
adjustments

* V(K) Is a quadratic function of Au(k+j), J=0,...,m-1



Objective Function

degrees of freedom
p m—1
VK) =D e = V) N i = y*) + D A" (l+ i) N Au(k + i)
i=1 i=0

l

V(k)=(Y(k)-Y*) diag(A)(Y (k) =Y *)+ AU’ (k)diag(A*)AU (k)

_ [ Y+l |  Au(k)
Substitute : _ Lxx(k)+LdAd(k)+Lee(k)+Lu ;
| Dsats - I Au(k + p— 1)3
Tl AU

V (k) =AU (K)HAU (k) + g" (k)AU (k) ;o(é)



Constraints

past 4 > future y

horizon |

Umin < u(k; + €|k) < Umax
|Au(k + £|k)| < Aumax, =0, ,m-—1

Ymin = y(k-l—j|k) S Ymax, J=1L1,---,p

Substitute the prediction
equation and rearrange to

CAU (k) > h(k)



Optimization Problem

e Quadratic Program

min AU (k)HAU (k)+g" (k)AU (k)

AU, (k)

such that CAU (k) > h(k)

e Unconstrained Solution

AU, ()=~ H g0

e Constrained Solution
— Must be solved numerically.



Quadratic Program

Minimization of a quadratic function subject to
linear constraints.

Convex and therefore fundamentally tractable.

Solution methods

— Active set method: Determination of the active set of
constraints on the basis of the KKT condition.

— Interior point method: Use of barrier function to “trap”
the solution inside the feasible region, Newton iteration

Solvers

— Off-the-shelf software, e.g., QPSOL

— Customization is desirable for large-scale problems.



Bi-Level Optimization

Steady-State Optimization (Linear Program)
MiNL(y,,u,(k))

ug (k)

C{ & }ch(la
u, (k)
u (k) =ulk-1)+Au(k)+:--+Au(k+m-1)

Vo = b, (k) + L Au (k)

AN

Steady-State
Prediction Eqn.

Optimal Settmg Values (setpoints)
Stat
yoo|k y U (k) e

Feedforward Measurement
Feedback Error

_ - _ Dynamic
To Dynamic Optimization (Quadratic Program) Prediction Eqn.



Stability



Classical Optimal Control - LOR

uadratic objective .
Q : Linear State Space System Model

p m-—1
> x/Ox,+ ) u/Ru, X = Ax, +Bu,
=0 =0 v, =Cx,

Fairly general formulation:
— State regulation, Output regulation, Setpoint tracking

Unconstrained <o horizon problem has an analytical solution.
— Linear state feedback law (Kalman’s LQR)

Stability guaranteed for stabilizable system
Solution i1s smooth with respect to the parameters

BUT, presence of inequality constraints — no analytical
solution via Riccati equation.




Why Has Stability Analysis of MPC
Been Difficult?

MPC=Nonlinear state feedback control law
Implicitly defined by an optimization

— No explicit expression for the MPC control
law

Use of an observer
— Lack of separation principle



Use of oo Prediction Horizon — Why?

 Stability guarantee

— The optimal cost function can be shown to be
the control Lyapunov function.

e | ess parameters to tune

* More consistent, intuitive effect of weight
parameters

e Close connection with the classical optimal
control methods, e.g., LQG control



Step Response Model Case

o0 m—1
V) =D Wi = V)N e — )+ D Au” (k+i) A Au(k +i)
i=1 i=0

m+n-1

m—1
V)= D Draie = V)N G =)+ D Au’ (k + i) A Au(k +i)
=1

i= i=0
with extra constrain
Must be at y* for the
/\/wl\ — cost to be bounded.

k+m-1 k+m+n-1
N time steps

k+m-1




Additional Comments

Previously, we assumed finite settling time.

Can be generalized to general state-space models

— More complicated procedure to turn the co-horizon
problem into a finite horizon problem

— Requires solving a Lyapunov equation to get the
terminal cost matrix

— Also, must make sure that output constraints will be
satisfied beyond the finite horizon — construction of an
output admissible set.

Use of a sufficiently large horizon (p= m+ the
settling time) should have a similar effect.
Can we always satisfy the settling constraint?

— y=y* may not be feasible due to input constraints or
Insufficient m. — use two-level approach.



Two-Level Optimization

Steady-State Optimization
(Linear Program or Quadratic Program)

Optimal Setting Values (setpoints)
yoo|k ! us (k)

Dynamic Optimization (co-horizon MPC)

Constraint ...,y = V. 1S guaranteed to be feasible.
Constraint Au(k)+-+-+ Au(k + m-1) = Au, —> Vesmendk = y;|k.



Process ldentification




Importance of Modeling

« Almost all models used in MPC are typically
empirical models “identified” through plant tests
rather than first-principles models.

— Step responses, pulse responses from plant tests.
— Transfer function models fitted to plant test data.

* Up to 80% of time and expense involved in
designing and installing a MPC is attributed to

modeling / system identification. — should be
Improved.

e Keep in mind that obtained models are imperfect
(both In terms of structure and parameters).

— Importance of feedback update of the model.
— Penalize excessive input movements.




Design Effort

Traditional Control:

MPC:

Process
Analysis

Design and
Tuning
of Controller

Modeling and
|dentification

Control
Specification




Model Structure (1)

i Disturbance
Process NOISE mtm—p| Model

B

Inputs t > Plant_
I Dynamics

e |/O Model

Output
Noise

Measured

K
I
I
I
I
I
I
: Outputs
I

I

I

White noise sequence
V) = Glau(k)+ Hg) e(k)>

effect of inputs  effect of dlsturbances noise

Models auto- and cross-correlations of the residual (not physical cause-effect)

Assume w.l.g. that H(0)=1



SISO 1/0O Model Structure(1)

« FIR (Past inputs only)
y(k) = hu(k=1)+--+ hyu(k —m) +e(k)
« ARX (Past inputs and outputs: “Equation Error’)

yk)=aylk-D)+---+a ylk—n)+bu(k-1)+---+b u(k—m)+e(k)
« ARMAX (Moving average of the noise term)

y(k)=aylk-D)+---+a y(k—n)+bu(k-1)+---+b u(k —m)
+e(k)+celk-1)+---+ce(k—n)

e Output Error (OE), Box-Jenkins (BJ), etc.




Overview

\ Model
Model Model Parameter For
Structure Structure (Model) Validation
Data Selection ” Estimation ”
v
Prediction Error Subspace ID AV Statistical
Method Method Method Method ETFE
MLE *Frequency Domain

*Bayesian



Prediction Error Method

Predominant method at current time
Developed by Ljung and coworkers

~lexible
— Can be applied to any model structure
— Can be used in recursive form

Well developed theories and software tools

— Book by Ljung, System ID Toolbox for MATLAB
Computational complexity depends on the model
structure

— ARX, FIR — Linear least squares
— ARMAX, OE, BJ — Nonlinear optimization




Prediction Error Method

e Put the model in the predictor form
y(k) =G(q,0)u(k)+ H(g,0)e(k) —

Vi = G(g,Ou(k) + (1~ H(,0))y(k) - G(g.O)u(k))

Contains at least 1 delay

e(k) = y(k) = vy = H *(q,0)(y(k) - G(gq,0)u(k))

* Choose the parameter values to minimize the sum of the
prediction error for the given N data points.

1 &
m;n{ﬁ;\\e(k)”;} e(k) = H *(q,0)(y(k) - G(q,0)u(k))

— ARX, FIR — Linear least squares,
— ARMAX, OE, BJ — Nonlinear least squares
* Not easy to use for identifying multivariable models.



MIMO 1I/0O Model Structure

 Inputs and outputs are vectors. Coefficients are matrices.
o For example, ARX model becomes

y(k)=Aylk=1)+---+4,y(k—n)
+Bu(k-1)+---+ B u(k—m)+e(k)

A;1san n, xn, Matrix. B; Isan n,, x n, matrix.

o Identification is very difficult.

— Different sets of coefficient matrices giving exactly same G(q) and
H(q) through pole/zero cancellations. — Problems in parameter
estimation — Requires special parameterization to avoid problem.



State Space Model

e Deterministic

x(k+1) = Ax(k) + Bu(k) ¢y  OutputError
Structure
y(k) = Cx(k) +e(k)

e Combined Deterministic / Stochastic
x(k+1) = Ax(k) + Bu(k) + Ke(k) - ARMAX

y(k) = Cx(k) +e(k) Structure

 Identifiability can be an issue here too

— State coordinate transformation does not change the
1/O relationship.



Subspace Method

More recent development

Dates back to the classical realization theories but
rediscovered and extended by several people

|dentifies a state-space model
Some theories and software tools

Computationally simple
— Non-iterative, linear algebra

Good for identifying multivariable models.
— No special parameterization is needed.

Not optimal in any sense
May need a lot of data for good results

May be combined with PEM
— Use SS method to obtain an initial guess for PEM.



SIM Procedures

SIM algorithms have two categories and contain two steps:

U, Yk
step |
L =
X Lj
step AC
AB.C.D.Q.R.S B.D,Q.R.S
CVA, N4SID MOESP, DSR

Acknowledgment:
Prof. Joe Qin



Use of Nonlinear Model




Difficulty (1)

x=f(x,u,d) piscretization? x(k +1) = F(x(k),u(k),d (k)
y=glx) | e > (k) = g(x(k))
o (C)igfro?:%iir]o?: /
Vise = & © F(x(k),u(k),d(k))+e(k)
Ve = & o F(F (x(k),u(k),d (k)),u(k +1),d (k))+ e(k)

Ve = &0 F7(x(k),u(k), - ulk + p=1),d (k))+e(k)
The prediction equation is nonlinear w.r.t. u(k), ......, u(k+p-1)

l

Nonlinear Program (Not so nice!)



Difficulty (2)

State Estimation
x=f(xu,d)+w
y=g(x)+v

\ Extended Kalman Filtering

k+1

x(k+1) = [ fxu,d)+ K (k) (v, (k) - g(x(k))

«Computationally more demanding steps, e.g., calculation of K at each time step.
*Based on linearization at each time step — not optimal, may not be stable.

Best practical solution at the current time

*Promising alternative: Moving Horizon Estimation (requires solving NLP).
Difficult to obtain with an appropriate stochastic system model (no 1D technique)



Model integration with
constant input u=u(k-1)
and d=d(k)

yk+1|k

yk+2|k

_yk+p|k i

Practical Algorithm

EKF

j x(k)

ff(x,u,d)

If(x,u,d)

|

jf(x,u,d)

_I_

Dynamic Matrix based on the

linearized model at the
current state and input values.

Au(k)

0" (1) Au (k +1)

Au(k+p-1) |

. J/

Linearized Effect of Future Input Adjustments

l Linear prediction equaton

Linear or Quadratic Program



Additional Comments / Summary

o Some refinements to the “Practical Algorithm” are
possible.

— Use the previously calculated input trajectory (instead of
the constant input) in the integration and linearization step.

— lterate between integration/linearization and control input
calculation.

o “Full-blown’ nonlinear MPC is still computationally
prohibitive in most applications.
— A lot of recent developments in SQP solver.

e Some promising directions
— Tabulation

— Simulation based approach (Approximate dynamic
programming)



Remaining Challenges

Efficient identification of control-relevant models

Managing the sometimes exorbitant on-line
computational load

— Nonlinear models — Nonlinear Programs (NLP)

— Hybrid system models (continuous dynamics + discrete
events or switches, e.g., pressure swing adsorption) —
Mixed Integer Programs (NLP)

— Difficult to solve these reliably on-line for large-scale
problems.

How do we design model, estimator (of model

parameters and state), and optimization algorithm as

an integrated system - that are simultaneously

optimized - rather than disparate components?

Long-term performance of MPC.




Conclusion

MPC is the established advanced multivariable
control technique for the process industry. It Is
already an indispensable tool and Its importance Is
continuing to grow.

It can be formulated to perform some economic
optimization and can also be interfaced with a
larger-scale (e.g., plantwide) optimization scheme.

Obtaining an accurate model and having reliable
sensors for key parameters are key bottlenecks.

A number of challenges remain to improve Its use
and performance.
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State-Space Model (1)

z(k+1) = Az(k) + B"u(k) + B*d (k)

y(k) = Cz(k)
Discretization State-Space ‘
Realization

ez, YE=GEUE) G

" or
y= C{L_ - () = G(s)u(s) + G (s)d(s)
Inearization
/0 model
z= f(z,u,d) Identifi((:)at?on‘ /
y=g(2) W(@),u@),i=1--N}

Fundamental Model Test Data

State-Space
Identification



State-SpaceModel (2)

z(k +1) = Az(k) + B"u(k) +de(k)]
yv(k+1) =Cz(k+1)

(z(k) = Az(k -1) + B'u(k -1) + B d (k —1)]

(k) =Cz(k)

Az(k +1) = AAz(k) + B"Au(k) + B Ad (k)
Ay(k+1) =CAz(k+1) —
y(k+1) = y(k) + C(4Az(k) + B* Au(k) + B¢ Ad (k))

'Az(k+1)':'A o"Az(k)'+ B" Au(l) + B?

Ad (k
y(k+1) | |[CA ]| y(k) | |CB" CB* (k)

Az (k) | ~._ State Update
y(k)=[0 1 ]L( ) x(k +1) = Dx(k) + T Au(k) + T¢ Ad (k)
] y(k) =Ex(k)




State-Space Model (3)

e Prediction _
Model prediction of y(k) — y(k) =Ex(k)
Model prediction error — e(k) =V, (k) — y(k)

_ _ Future input
Predicted future The “state” stored in

) ! moves
outputsamples memory ] /(to be decided)
>‘k+1|k =P l Au(k)
S R
Vi | | EDT Aulk+p-1)
Dynamic Matrix — _ - _
(made of step T Ad (k) e(k)

response coefficients)\Qd / I
' "_Feedback Error
(ks p-1)| |elk) Correction

Feedforward term: new measurement
(Assume Ad(k+1)=...= A d(k+p-1)=0)



