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Overview

• Popularized in the late 70s and early 80s in refineries
• Standard APC method for refineries and petrochemical plants
• 4500+ reported industrial applications (Yr. 2000)
• Many vendors marketing software and engineering service

–Aspen Tech, Honeywell, Invensys, etc.
• Strong theoretical basis and systematic design for stability and performance
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Some Key Features
• Computer based: Sampled-data control
• Model based: Requires a dynamic process model 

(fundamental or empirical)
• Feedback Update: Model updated using on-line 

measurements.
• Predictive: Makes explicit prediction of the future 

time behavior of CVs within a chosen window.



Some Key Features(2)
• Optimization Based: Performs optimization (numerical 

search) on-line for optimal control adjustments. 

No explicit form of control law – just model, objective 
function, and constraints are specified.

• Integrated constraint handling and economic optimization 
with regulatory and servo control.

• Receding Horizon Control: Repeats the prediction and 
optimization at each sample time step to update the optimal 
input trajectory after a feedback update.
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Analogy to Chess Playing

My
Move

The Opponent’s
Move

New State

my 
move

his move

my move

Opponent
(The Disturbance)

I
(The Controller)



Industrial Use of MPC



• Some trial of computer based control during 50s-60s (e.g., 
Standard Oil / IBM).

• Reappeared at Shell Oil and other refineries during late 70s 
and early 80s. – easier, cheaper implementation enabled by 
advances in microprocessors.

• Various commercial software
• Tens of thousands of worldwide installations
• Predominantly in the oil and petrochemical industries but 

the range of applications is expanding.
• Models used are predominantly empirical models 

developed through plant testing.
• The technology is not only for multivariable control, but 

for most economic operation within constraint boundaries.

Industrial Use of MPC



Result of a Survey in 1999 (Qin and Badgwell)



Linear MPC Vendors and Packages
• Aspentech

– DMCplus
– DMCplus-Model

• Honeywell
– Robust MPC Technology (RMPCT)

• Adersa
– Predictive Functional Control (PFC)
– Hierarchical Constraint Control (HIECON)
– GLIDE (Identification package)

• MDC Technology (Emerson)
– SMOC (licensed from Shell)
– Delta V Predict

• Predictive Control Limited (Invensys)
– Connoisseur

• ABB
– 3d MPC



Result of A Survey for Nonlinear MPC (Qin and Badgwell)



• MPC provides a systematic, consistent, and integrated 
solution to process control problems with complex 
features:
– Delays, inverse responses and other complex dynamics.
– Strong interactions (e.g., large RGA)
– Constraints (e.g., actuator limits, output limits)

Reason for Popularity(1)

Low-level
PID Loops

Supervisory 
Control

Selectors, Switches,
Delay Compensations,

Anti-windups, Decouplers, etc.

To control 
valves

Low-level
PID Loops

Process
Optimization

Advanced MV Control
MPC

More and more 
optimization is done 
at the MPC level.



Example 1: Blending System Control
•Control rA and rB.
•Control q if possible.
•Flowrates of additives 
are limited.

Classical 
Solution

MPC:
Solve at

each time k
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Advantages of MPC over Traditional APC
• Integrated solution

– Automatic constraint handling
– Feedforward / feedback control
– No need for decoupler or delay compensation

• Efficient Utilization of degrees of freedom
– Can handle nonsquare systems (e.g., more MVs and CVs)
– Assignable priorities, ideal settling values for MVs

• Consistent, systematic methodology
• Realized benefits 

– Higher on-line times
– Cheaper implementation
– Easier maintenance



• Emerging popularity of on-line optimization
• Process optimization and control are often conflicting 

objectives 
– Optimization pushes the process to the boundary of constraints.
– Quality of control determines how close one can push the process to 

the boundary.

• Implications for process control
– High performance control is needed to realize on-line optimization.
– Constraint handling is a must.
– The appropriate tradeoff between optimization and control is time-

varying and is best handled within a single framework

Reason for Popularity(2)

Model Predictive Control



Conflict / Synergy Between Optimization and Control

Acknowledgment:
Aspen Technology



Bi-Level Optimization Used in MPC

Steady-State Optimization
(LP)

Dynamic Optimization
(QP)

Optimal setting 
values for the 

inputs and outputs
(setpoints)

Steady-state
Prediction Model

Adjustments to 
setpoints of low 
level loops or 
control valves

New
Measurements

(Feedback Update)

Economics Based Objective
(Maximum profit or 

throughput, minimum utility) 
Control Based Constraints

Minimization of Error
(=Setpoint – Output and Input)
Constraints on actuator limits 
and safety-sensitive variables.



New Operational Hierarchy and Role of MPC

Large-scale (e.g, 
plantwide)optimization

involving rigorous 
nonlinear models 

(AspenPlus)

Local optimization + control



An Exemplary Application(1)

Acknowledgment:
Mitsubishi Chemicals



An Exemplary Application(2)

Acknowledgment:
Mitsubishi Chemicals



Linear MPC



Popular Linear Model Structures
• Finite Impulse Response Model

• Truncated Step Response Model

• Transfer Function Model

• State Space Model
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Key: Prediction Equation
• Step Response Model
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Feedback Error
Correction

The “state” stored in 
dynamic memory

Predicted future 
output samples

Dynamic Matrices
(made of step 

response coefficients)

Feedforward term: new measurement
(Assume ∆d(k+1)=…= ∆ d(k+p-1)=0)



Prediction Equation: General
• Regardless of model form, one gets the prediction 

equation in the form of

• Assumptions
– Measured DV (d) remains constant at the current value 

of d(k)
– Model prediction error (e) remains constant at the 

current value of e(k)
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Measurement Correction of State

Previous State
(in “Memory”)

Current State

Prediction Model
for Future Outputs 

New Input Move
(Just Implemented)

Future Input Moves
(To Be Determined)

To Optimization

State Update

Prediction 
Feedback / Feedforward

Measurements

Measurement 
Correction 

State:
Compact representation

Of the past input and 
measurement record



State Update Equation
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• K is the update gain matrix that can be found in 
various ways
– Pole placement: Not so effective with systems with 

many states (most chemical processes)
– Kalman filtering: Requires a stochastic model of form
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White noises of known covariances
Effect of unmeasured disturbances and noise



Prediction Equation
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What Are the Advantages of Using a 
State Estimator (Observer)?

• Can handle unstable processes
– Integrating processes, run-away processes

• Cross-channel update
– More effective update of output channels with delays or 

measurement problems based on other channels.

• Systematic handling of multi-rate measurements
• Optimal extrapolation of output error and filtering 

of noise (based on the given stochastic system model)

Process Delays,
Measurement Difficulties,

Slow Sampling

y1

y2

Unmeasured 
inputs

Measured inputs

Early update through
modeled correlation



Objective Function

• Minimization Function: Quadratic cost (as  in DMC)

– Consider only m input moves by assuming ∆u(k+j)=0 for 
j≥m

– Penalize the tracking error as well as the magnitudes of 
adjustments

• V(k) is a quadratic function of ∆u(k+j), j=0,…,m-1
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Objective Function
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Constraints

Substitute the prediction 
equation and rearrange to 
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Optimization Problem
• Quadratic Program

• Unconstrained Solution

• Constrained Solution
– Must be solved numerically.
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Quadratic Program
• Minimization of a quadratic function subject to 

linear constraints.
• Convex and therefore fundamentally tractable.
• Solution methods

– Active set method: Determination of the active set of 
constraints on the basis of the KKT condition.

– Interior point method: Use of barrier function to “trap”
the solution inside the feasible region, Newton iteration

• Solvers
– Off-the-shelf software, e.g., QPSOL
– Customization is desirable for large-scale problems.



Bi-Level Optimization
Steady-State Optimization (Linear Program)
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Stability



Classical Optimal Control - LQR
• Quadratic objective

• Fairly general formulation:
– State regulation, Output regulation, Setpoint tracking

• Unconstrained ∞ horizon problem has an analytical solution. 
→ Linear state feedback law (Kalman’s LQR)

• Stability guaranteed for stabilizable system
• Solution is smooth with respect to the parameters
• BUT, presence of inequality constraints → no analytical 

solution via Riccati equation.
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Why Has Stability Analysis of MPC 
Been Difficult?

• MPC=Nonlinear state feedback control law
• Implicitly defined by an optimization

– No explicit expression for the MPC control 
law

• Use of an observer
– Lack of separation principle



Use of ∞ Prediction Horizon – Why?
• Stability guarantee

– The optimal cost function can be shown to be 
the control Lyapunov function.

• Less parameters to tune
• More consistent, intuitive effect of weight 

parameters
• Close connection with the classical optimal 

control methods, e.g., LQG control



Step Response Model Case
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Additional Comments
• Previously, we assumed finite settling time.
• Can be generalized to general state-space models

– More complicated procedure to turn the ∞-horizon 
problem into a finite horizon problem

– Requires solving a Lyapunov equation to get the 
terminal cost matrix

– Also, must make sure that output constraints will be 
satisfied beyond the finite horizon → construction of an 
output admissible set.

• Use of a sufficiently large horizon (p≈ m+ the 
settling time) should have a similar effect.

• Can we always satisfy the settling constraint?
– y=y* may not be feasible due to input constraints or 

insufficient m. → use two-level approach.



Two-Level Optimization

Steady-State Optimization 
(Linear Program or Quadratic Program)

Optimal Setting Values (setpoints) 
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Process Identification



Importance of Modeling
• Almost all models used in MPC are typically 

empirical models “identified” through plant tests
rather than first-principles models.
– Step responses, pulse responses from plant tests.
– Transfer function models fitted to plant test data.

• Up to 80% of time and expense involved in 
designing and installing a MPC is attributed to 
modeling / system identification. → should be 
improved.

• Keep in mind that obtained models are imperfect
(both in terms of structure and parameters).  
– Importance of feedback update of the model.
– Penalize excessive input movements.



Design Effort

Process
Analysis

Design and 
Tuning

of Controller

Modeling and
Identification

Control 
Specification

Traditional Control: MPC:



Model Structure (1)

• I/O Model

Plant
Dynamics

Disturbance
Model

Model

Σ Σ

Process Noise
Output 
Noise

Inputs

Measured
Outputs

4342143421
noise es,disturbanc ofeffect inputs ofeffect 

)()()()()( keqHkuqGky +=
White noise sequence

Models auto- and cross-correlations of the residual (not physical cause-effect)

Assume w.l.g. that H(0)=1



SISO I/O Model Structure(1)
• FIR (Past inputs only)

• ARX (Past inputs and outputs: “Equation Error”)

• ARMAX (Moving average of the noise term)

• Output Error (OE), Box-Jenkins (BJ), etc.
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Overview

Parameter
(Model)

EstimationData

Model 
Structure

Model 
Structure
Selection

Model
For

Validation

Prediction Error 
Method

Subspace ID
Method

IV
Method

Statistical
Method ETFE

•MLE
•Bayesian

•Frequency Domain



Prediction Error Method

• Predominant method at current time
• Developed by Ljung and coworkers
• Flexible

– Can be applied to any model structure
– Can be used in recursive form

• Well developed theories and software tools
– Book by Ljung, System ID Toolbox for MATLAB

• Computational complexity depends on the model 
structure
– ARX, FIR → Linear least squares
– ARMAX, OE, BJ → Nonlinear optimization



Prediction Error Method
• Put the model in the predictor form

• Choose the parameter values to minimize the sum of the 
prediction error for the given N data points.

– ARX, FIR → Linear least squares,
– ARMAX, OE, BJ → Nonlinear least squares

• Not easy to use for identifying multivariable models.
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MIMO I/O Model Structure
• Inputs and outputs are vectors.  Coefficients are matrices.
• For example, ARX model becomes

• Identification is very difficult.
– Different sets of coefficient matrices giving exactly same G(q) and 

H(q) through pole/zero cancellations. → Problems in parameter 
estimation → Requires special parameterization to avoid problem.
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State Space Model
• Deterministic

• Combined Deterministic / Stochastic

• Identifiability can be an issue here too
– State coordinate transformation does not change the 

I/O relationship.
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Subspace Method
• More recent development
• Dates back to the classical realization theories but 

rediscovered and extended by several people
• Identifies a state-space model
• Some theories and software tools
• Computationally simple

– Non-iterative, linear algebra
• Good for identifying multivariable models.

– No special parameterization is needed.
• Not optimal in any sense
• May need a lot of data for good results
• May be combined with PEM

– Use SS method to obtain an initial guess for PEM.



SIM Procedures
SIM algorithms have two categories and contain two steps:

CVA, N4SID MOESP, DSR
Acknowledgment:

Prof. Joe Qin



Use of Nonlinear Model



Difficulty (1)
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Difficulty (2)
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Extended Kalman Filtering

•Computationally more demanding  steps, e.g., calculation of K at each time step.
•Based on linearization at each time step – not optimal, may not be stable.
•Best practical solution at the current time
•Promising alternative: Moving Horizon Estimation (requires solving NLP).
•Difficult to obtain with an appropriate stochastic system model (no ID technique)



Practical Algorithm
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Additional Comments / Summary
• Some refinements to the “Practical Algorithm” are 

possible.
– Use the previously calculated input trajectory (instead of 

the constant input) in the integration and linearization step.
– Iterate between integration/linearization and control input 

calculation.
• “Full-blown” nonlinear MPC is still computationally 

prohibitive in most applications.
– A lot of recent developments in SQP solver.

• Some promising directions
– Tabulation
– Simulation based approach (Approximate dynamic 

programming) 



Remaining Challenges
• Efficient identification of control-relevant models
• Managing the sometimes exorbitant on-line 

computational load
– Nonlinear models → Nonlinear Programs (NLP)
– Hybrid system models (continuous dynamics + discrete 

events or switches, e.g., pressure swing adsorption) →
Mixed Integer Programs (NLP)

– Difficult to solve these reliably on-line for large-scale
problems.

• How do we design model, estimator (of model 
parameters and state), and optimization algorithm as 
an integrated system - that are simultaneously 
optimized - rather than disparate components?

• Long-term performance of MPC.



Conclusion

• MPC is the established advanced multivariable 
control technique for the process industry. It is 
already an indispensable tool and its importance is 
continuing to grow.

• It can be formulated to perform some economic 
optimization and can also be interfaced with a 
larger-scale (e.g., plantwide) optimization scheme.

• Obtaining an accurate model and having reliable 
sensors for key parameters are key bottlenecks.

• A number of challenges remain to improve its use 
and performance.
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State-SpaceModel (2)
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State-Space Model (3)
• Prediction
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