Model Predictive Control

WebCAST Seminar May 7, 2007

Professor Jay H. Lee School of Chemical and Biomolecular Engineering Georgia Institute of Technology ©Jay H. Lee, 2007

Overview

- Popularized in the late 70s and early 80s in refineries
- Standard APC method for refineries and petrochemical plants
- 4500+ <u>reported</u> industrial applications (Yr. 2000)
- Many vendors marketing software and engineering service -Aspen Tech, Honeywell, Invensys, etc.
- Strong theoretical basis and systematic design for stability and performance

Some Key Features

- Computer based: Sampled-data control
- **Model based**: Requires a dynamic process model (fundamental or empirical)
- Feedback Update: Model updated using on-line measurements.
- **Predictive**: Makes explicit prediction of the future time behavior of CVs within a chosen window.

Some Key Features(2)

• **Optimization Based**: Performs optimization (numerical search) on-line for optimal control adjustments.

$$\min_{u_{i}} \sum_{i=0}^{p} \phi_{i}(x_{i}, u_{i})$$

$$g_{i}(x_{i}, u_{i}) \geq 0 \qquad \xrightarrow{?} \qquad u_{0} = \mu(x_{0})$$

$$g_{i+1} = F(x_{i}, u_{i}) \qquad \xrightarrow{HJB} \qquad Eqn.$$

No *explicit* form of control law – just model, objective function, and constraints are specified.

- **Integrated** constraint handling and economic optimization with regulatory and servo control.
- **Receding Horizon Control**: Repeats the prediction and optimization at each sample time step to update the optimal input trajectory after a feedback update.

Analogy to Chess Playing

Industrial Use of MPC

- Some trial of computer based control during 50s-60s (e.g., Standard Oil / IBM).
- Reappeared at Shell Oil and other refineries during late 70s and early 80s. easier, cheaper implementation enabled by advances in microprocessors.
- Various commercial software
- Tens of thousands of worldwide installations
- Predominantly in the oil and petrochemical industries but the range of applications is expanding.
- Models used are predominantly <u>empirical</u> models developed through plant testing.
- The technology is not only for multivariable control, but for most economic operation within constraint boundaries.

Result of a Survey in 1999 (Qin and Badgwell)

Area	Aspen Technology	Honeywell Hi-Spec	Adersa ¹	Invensys	SGS ²	Total
Refining	1200	480	280	25		1985
Petrochemicals	450	80) -			550
Chemicals	100	20 3		21		144
Pulp and Paper	18	50 -		-		68
Air & Gas	-	10 -		-		10
Utility	-	10 -		4		14
Mining/Metallurgy	8	6	7	16		37
Food Processing	-	-	41	10		51
Polymer	17	-	-	-		17
Furnaces	-	- 42		3		45
Aerospace/Defense	-	-	- 13			13
Automotive	-	-	7	-		7
Unclassified	40	40	1045	26	450	1601
Total	1833	696	1438	125	450	4542
First App.	DMC:1985	PCT:1984	IDCOM:1973	· · · · · ·		_
	IDCOM-M:1987	RMPCT:1991	HIECON:1986	1984	1985	
	OPC:1987					
Largest App	603x283	225x85	-	31x12	-	

Linear MPC Vendors and Packages

- Aspentech
 - DMCplus
 - DMCplus-Model
- Honeywell
 - Robust MPC Technology (RMPCT)
- Adersa
 - Predictive Functional Control (PFC)
 - Hierarchical Constraint Control (HIECON)
 - GLIDE (Identification package)
- MDC Technology (Emerson)
 - SMOC (licensed from Shell)
 - Delta V Predict
- Predictive Control Limited (Invensys)
 - Connoisseur
- ABB
 - 3d MPC

Result of A Survey for Nonlinear MPC (Qin and Badgwell)

Area	Adersa	Aspen	Continental	DOT	Pavilion	Total
		Technology	Controls	Products	Technologies	
Air and Gas			18			18
Chemicals	2		15		5	22
Food Processing					9	9
Polymers		1		5	15	21
Pulp & Paper					1	1
Refining					13	13
Utilities		5	2			7
Unclassified	1		1			2
Total	3	6	36	5	43	93

Reason for Popularity(1)

- MPC provides a systematic, consistent, and integrated solution to process control problems with complex features:
 - Delays, inverse responses and other complex dynamics.
 - Strong interactions (e.g., large RGA)
 - Constraints (e.g., actuator limits, output limits)

Example 1: Blending System Control

Advantages of MPC over Traditional APC

- Integrated solution
 - Automatic constraint handling
 - Feedforward / feedback control
 - No need for decoupler or delay compensation
- Efficient Utilization of degrees of freedom
 - Can handle nonsquare systems (e.g., more MVs and CVs)
 - Assignable priorities, ideal settling values for MVs
- Consistent, systematic methodology
- Realized benefits
 - Higher on-line times
 - Cheaper implementation
 - Easier maintenance

Reason for Popularity(2)

- Emerging popularity of **on-line optimization**
- Process optimization and control are often conflicting objectives
 - Optimization pushes the process to the boundary of constraints.
 - Quality of control determines how close one can push the process to the boundary.
- Implications for process control
 - High performance control is needed to realize on-line optimization.
 - Constraint handling is a must.
 - The appropriate tradeoff between optimization and control is timevarying and is best handled within a single framework

Model Predictive Control

Conflict / Synergy Between Optimization and Control

Acknowledgment: Aspen Technology

Bi-Level Optimization Used in MPC

New Operational Hierarchy and Role of MPC

Move the plant to the current optimal condition fast and smoothly w/o violating constraints

Local optimization + control

An Exemplary Application(1)

Acknowledgment: Mitsubishi Chemicals

An Exemplary Application(2)

Mitsubishi Chemicals

Popular Linear Model Structures

• Finite Impulse Response Model

 $y(k) = h_1 u(k-1) + \dots + h_N u(k-m)$

• Truncated Step Response Model

$$x(k+1) = \underbrace{M_1}_{shift} x(k) + \underbrace{S}_{step \, response} \Delta u(k)$$

• Transfer Function Model

$$y(k) = a_1 y(k-1) + \dots + a_n y(k-n) + b_1 u(k-1) + \dots + b_m u(k-m) \implies$$

• State Space Model
$$G(q) = \frac{b_1 q^{-1} + \dots + b_m q^{-m}}{1 - a_1 q^{-1} - \dots - a_n q^{-n}}$$

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k)$$

Key: Prediction Equation

Step Response Model

(Assume $\Delta d(k+1)=...=\Delta d(k+p-1)=0$)

Prediction Equation: General

• Regardless of model form, one gets the prediction equation in the form of

$$\begin{bmatrix} y_{k+1|k} \\ \vdots \\ y_{k+p|k} \end{bmatrix} = \underbrace{L^{x}x(k) + L^{d}\Delta d(k) + L^{e}e(k)}_{known \equiv b(k)} + L^{u} \begin{bmatrix} \Delta u(k) \\ \vdots \\ \Delta u(k+p-1) \end{bmatrix}_{\Delta U(k)}$$

- Assumptions
 - Measured DV (d) remains constant at the current value of d(k)
 - Model prediction error (e) remains constant at the current value of e(k)

State Update Equation

$$\hat{x}(k+1) = \Phi \hat{x}(k) + \Gamma^u \Delta u(k) + \Gamma^d \Delta d(k)$$

$$+K(y_m(k)-\Xi\hat{x}(k))$$

- K is the update gain matrix that can be found in various ways
 - *Pole placement*: Not so effective with systems with many states (most chemical processes)
 - Kalman filtering: Requires a stochastic model of form

$$x(k+1) = \Phi x(k) + \Gamma^{u} \Delta u(k) + \Gamma^{d} \Delta d(k) + w(k)$$
$$y(k) = \Xi x(k) + v(k)$$

White noises of known covariances Effect of unmeasured disturbances and noise

Prediction Equation

Contains past feedback measurement corrections

Additional measurement correction NOT needed here!

What Are the Advantages of Using a State Estimator (Observer)?

- Can handle **unstable** processes
 - Integrating processes, run-away processes
- Cross-channel update
 - More effective update of output channels with delays or measurement problems based on other channels.

- Systematic handling of **multi-rate** measurements
- Optimal **extrapolation of output error** and **filtering of noise** (based on the given stochastic system model)

Objective Function

• Minimization Function: Quadratic cost (as in DMC)

$$V(k) = \sum_{i=1}^{p} (y_{k+i|k} - y^*)^T \Lambda^y (y_{k+i|k} - y^*) + \sum_{i=0}^{m-1} \Delta u^T (k+i) \Lambda^u \Delta u(k+i)$$

- Consider only m input moves by assuming $\Delta u(k+j)=0$ for $j\ge m$
- Penalize the tracking error as well as the magnitudes of adjustments
- V(k) is a quadratic function of $\Delta u(k+j)$, j=0,...,m-1

Objective Function

$$V(k) = \sum_{i=1}^{p} (y_{k+i|k} - y^*)^T \Lambda^y (y_{k+i|k} - y^*) + \sum_{i=0}^{m-1} \Delta u^T (k+i) \Lambda^u \Delta u(k+i)$$

$$\downarrow$$

$$V(k) = (Y(k) - Y^*)^T \operatorname{diag}(\Lambda^y) (Y(k) - Y^*) + \Delta U_m^T(k) \operatorname{diag}(\Lambda^u) \Delta U_m(k)$$

 $V(k) = \Delta U_m^T(k) H \Delta U_m(k) + g^T(k) \Delta U_m(k) + c(k)$

Optimization Problem

• Quadratic Program

 $\min_{\Delta U_m(k)} \Delta U_m^T(k) H \Delta U_m(k) + g^T(k) \Delta U_m(k)$ such that $C \Delta U_m(k) \ge h(k)$

• Unconstrained Solution

$$\Delta U_m(k) = -\frac{1}{2}H^{-1}g(k)$$

- Constrained Solution
 - Must be solved numerically.

Quadratic Program

- Minimization of a quadratic function subject to linear constraints.
- Convex and therefore *fundamentally tractable*.
- Solution methods
 - Active set method: Determination of the active set of constraints on the basis of the KKT condition.
 - Interior point method: Use of barrier function to "trap" the solution inside the feasible region, Newton iteration
- Solvers
 - Off-the-shelf software, e.g., QPSOL
 - Customization is desirable for large-scale problems.

Bi-Level Optimization

Classical Optimal Control - LQR

• Quadratic objective

Linear State Space System Model

$$\sum_{i=0}^{p} x_{i}^{T} Q x_{i} + \sum_{i=0}^{m-1} u_{i}^{T} R u_{i}$$

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k$$

- Fairly general formulation:
 - State regulation, Output regulation, Setpoint tracking
- Unconstrained ∞ horizon problem has an analytical solution.
 → Linear state feedback law (Kalman's LQR)
- Stability guaranteed for <u>stabilizable</u> system
- Solution is smooth with respect to the parameters
- BUT, presence of inequality constraints → no analytical solution via Riccati equation.

Why Has Stability Analysis of MPC Been Difficult?

- MPC=Nonlinear state feedback control law
- Implicitly defined by an optimization
 - No explicit expression for the MPC control law
- Use of an observer
 - Lack of separation principle

Use of ∞ Prediction Horizon – Why?

- Stability guarantee
 - The optimal cost function can be shown to be the control Lyapunov function.
- Less parameters to tune
- More consistent, intuitive effect of weight parameters
- Close connection with the classical optimal control methods, e.g., LQG control

Additional Comments

- Previously, we assumed **finite** settling time.
- Can be generalized to general state-space models
 - More complicated procedure to turn the ∞-horizon problem into a finite horizon problem
 - Requires solving a Lyapunov equation to get the terminal cost matrix
 - Also, must make sure that output constraints will be satisfied beyond the finite horizon \rightarrow construction of an output admissible set.
- Use of a *sufficiently large* horizon (p≈ m+ the settling time) should have a similar effect.
- Can we always satisfy the settling constraint?
 - $y=y^*$ may not be feasible due to input constraints or insufficient m. \rightarrow use two-level approach.

Two-Level Optimization

Steady-State Optimization (Linear Program or Quadratic Program)

Optimal Setting Values (setpoints)

 $y^*_{\infty|k}, u^*_s(k)$

Dynamic Optimization (*∞*-horizon MPC)

Constraint $y_{k+m+n-1|k} = y_{\infty|k}^*$ is guaranteed to be feasible. Constraint $\Delta u(k) + \dots + \Delta u(k+m-1) = \Delta u_s^* \to y_{k+m+n-1|k} = y_{\infty|k}^*$.

Importance of Modeling

- Almost all models used in MPC are typically empirical models "identified" through **plant tests** rather than first-principles models.
 - Step responses, pulse responses from plant tests.
 - Transfer function models fitted to plant test data.
- Up to 80% of time and expense involved in designing and installing a MPC is attributed to modeling / system identification. → should be improved.
- Keep in mind that obtained models are **imperfect** (both in terms of structure and parameters).
 - Importance of <u>feedback</u> update of the model.
 - Penalize excessive input movements.

Design Effort

Model Structure (1)

• I/O Model

White noise sequence

$$y(k) = \underbrace{G(q)u(k)}_{\text{effect of inputs}} + \underbrace{H(q)e(k)}_{\text{effect of disturbances, noise}}$$

Models auto- and cross-correlations of the residual (not physical cause-effect)

Assume w.l.g. that H(0)=1

SISO I/O Model Structure(1)

• <u>FIR</u> (Past inputs only)

$$y(k) = h_1 u(k-1) + \dots + h_N u(k-m) + e(k)$$

• <u>ARX</u> (Past inputs and outputs: "Equation Error")

$$y(k) = a_1 y(k-1) + \dots + a_n y(k-n) + b_1 u(k-1) + \dots + b_m u(k-m) + e(k)$$

• <u>ARMAX</u> (Moving average of the noise term)

$$y(k) = a_1 y(k-1) + \dots + a_n y(k-n) + b_1 u(k-1) + \dots + b_m u(k-m)$$
$$+ e(k) + c_1 e(k-1) + \dots + c_n e(k-n)$$

• <u>Output Error</u> (OE), <u>Box-Jenkins</u> (BJ), etc.

Prediction Error Method

- Predominant method at current time
- Developed by Ljung and coworkers
- Flexible
 - Can be applied to any model structure
 - Can be used in recursive form
- Well developed theories and software tools

 Book by Ljung, System ID Toolbox for MATLAB
- Computational complexity depends on the model structure
 - ARX, FIR \rightarrow Linear least squares
 - ARMAX, OE, $BJ \rightarrow$ Nonlinear optimization

Prediction Error Method

- Put the model in the predictor form $y(k) = G(q,\theta)u(k) + H(q,\theta)e(k) \rightarrow$ $y_{k|k-1} = G(q,\theta)u(k) + \underbrace{(I - H^{-1}(q,\theta))}_{\text{Contains at least 1 delay}}(y(k) - G(q,\theta)u(k))$ $e(k) = y(k) - y_{k|k-1} = H^{-1}(q,\theta)(y(k) - G(q,\theta)u(k))$
- Choose the parameter values to minimize the sum of the prediction error for the given N data points.

$$\min_{\theta} \left\{ \frac{1}{N} \sum_{k=1}^{N} \left\| e(k) \right\|_{2}^{2} \right\}$$

$$e(k) = H^{-1}(q,\theta) (y(k) - G(q,\theta)u(k))$$

- ARX, FIR \rightarrow Linear least squares,
- ARMAX, OE, $BJ \rightarrow$ Nonlinear least squares
- Not easy to use for identifying *multivariable* models.

MIMO I/O Model Structure

- Inputs and outputs are vectors. Coefficients are matrices.
- For example, ARX model becomes

$$y(k) = A_1 y(k-1) + \dots + A_n y(k-n) + B_1 u(k-1) + \dots + B_m u(k-m) + e(k)$$

 A_i is an $n_y \times n_y$ matrix. B_i is an $n_y \times n_u$ matrix.

- *Identification* is very difficult.
 - Different sets of coefficient matrices giving exactly same G(q) and H(q) through pole/zero cancellations. \rightarrow Problems in parameter estimation \rightarrow Requires special parameterization to avoid problem.

State Space Model

• Deterministic

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \\ y(k) &= Cx(k) + e(k) \end{aligned} \qquad (b) \qquad (b) \qquad (c) \qquad$$

Combined Deterministic / Stochastic

- *Identifiability* can be an issue here too
 - State coordinate transformation does not change the I/O relationship.

Subspace Method

- More recent development
- Dates back to the classical realization theories but rediscovered and extended by several people
- Identifies a state-space model
- Some theories and software tools
- Computationally simple
 - Non-iterative, linear algebra
- Good for identifying *multivariable* models.
 - No special parameterization is needed.
- Not optimal in any sense
- May need a lot of data for good results
- May be combined with PEM
 - Use SS method to obtain an initial guess for PEM.

SIM Procedures

SIM algorithms have two categories and contain two steps:

Use of Nonlinear Model

Difficulty (1)

State Estimation

$$\dot{x} = f(x, u, d) + w$$

$$y = g(x) + v$$
Extended Kalman Filtering

$$x(k+1) = \int_{k}^{k+1} f(x, u, d) + K(k) (y_m(k) - g(x(k)))$$

- •Computationally more demanding steps, e.g., calculation of K at each time step.
- •Based on linearization at each time step not optimal, may not be stable.
- •Best practical solution at the current time
- •Promising alternative: Moving Horizon Estimation (requires solving NLP).
- •Difficult to obtain with an appropriate stochastic system model (no ID technique)

Additional Comments / Summary

- Some refinements to the "Practical Algorithm" are possible.
 - Use the previously calculated input trajectory (instead of the constant input) in the integration and linearization step.
 - Iterate between integration/linearization and control input calculation.
- "Full-blown" nonlinear MPC is still computationally prohibitive in most applications.
 - A lot of recent developments in SQP solver.
- Some promising directions
 - Tabulation
 - Simulation based approach (Approximate dynamic programming)

Remaining Challenges

- <u>Efficient</u> identification of **control-relevant** models
- Managing the sometimes exorbitant on-line **computational load**
 - Nonlinear models \rightarrow Nonlinear Programs (NLP)
 - Hybrid system models (continuous dynamics + discrete events or switches, e.g., pressure swing adsorption) → Mixed Integer Programs (NLP)
 - Difficult to solve these reliably on-line for <u>large-scale</u> problems.
- How do we design model, estimator (of model parameters and state), and optimization algorithm as **an integrated system** that are simultaneously optimized rather than disparate components?
- Long-term **performance** of MPC.

Conclusion

- MPC is the established advanced multivariable control technique for the process industry. It is already an indispensable tool and its importance is continuing to grow.
- It can be formulated to perform some economic optimization and can also be interfaced with a larger-scale (e.g., plantwide) optimization scheme.
- Obtaining an accurate model and having reliable sensors for key parameters are key bottlenecks.
- A number of challenges remain to improve its use and performance.

Some References to Start With.

- Morari, M. and J. H. Lee, "Model Predictive Control : Past, Present and Future," *Computers and Chemical Engineering*, 23, pp. 667-682 1999.
- Lee, J. H. and B. Cooley, "Recent Advances in Model Predictive Control and Other Related Areas," *5th International Conference on Chemical Process Control*, edited by J. Kantor, C. Garcia, and B. Carnahan, *AIChE Symposium Series*, Vol. 91, No. 316, pp. 201-216, 1997.
- Qin, S. J. and T. Badgwell, "A survey of industrial model predictive control technology," *Control Engineering Practice*, 11, 733–764, 2003.
- Rawlings, J. and K. Muske, "The Stability of Constrained Receding Horizon Control," *IEEE Trans. Auto. Control*, 38, 1993

State-Space Identification

State-SpaceModel (2)

$$\begin{pmatrix}
z(k+1) = Az(k) + B^{u}u(k) + B^{d}d(k) \\
y(k+1) = Cz(k+1)
\end{pmatrix}$$

$$\begin{pmatrix}
z(k) = Az(k-1) + B^{u}u(k-1) + B^{d}d(k-1) \\
y(k) = Cz(k)
\end{pmatrix}$$

$$\Delta z(k+1) = A\Delta z(k) + B^{u}\Delta u(k) + B^{d}\Delta d(k)$$

$$\Delta y(k+1) = C\Delta z(k+1) \rightarrow \\
y(k+1) = y(k) + C(A\Delta z(k) + B^{u}\Delta u(k) + B^{d}\Delta d(k))$$

State-Space Model (3)

• Prediction

