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Outline

• Limitations of linear model predictive control

• Introduction to nonlinear model predictive control

• Real-time implementation issues

• Nonlinear control of an air separation column

• Final comments



1. Limitations of Linear Model Predictive 
Control
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Linear Model Predictive Control (LMPC)

• Background
– Constrained multivariable control technology
– Requires availability of linear dynamic model
– Chemical process industry standard

• Real-time implementation
– Repeated on-line solution of optimization problem
– Receding horizon formulation
– Computationally efficient & robust quadratic program

• Commercial technology
– DMCplus (Aspen Technology)
– RMPCT (Honeywell)
– Many others
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Dynamic Matrix Control (DMC)

Ogunnaike & Ray, Process Dynamics, Modeling and Control, Oxford, 1994 
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Standard LMPC Formulation

• Manipulated variables (U)
– Manipulated to minimize 

objective function
– Penalize deviations for target 

values (Usp)
– Hard constraints on absolute 

values & rate-of-changes
• Equality constraints

– Linear step response model 
identified from plant tests

• Tuning parameters
– Sampling time
– Prediction horizon
– Control horizon
– Weighting matrices
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• Controlled variables (Y)
– Penalize deviations from target 

values (Ysp)
– Hard lower & upper bound 

constraints
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Triple Column Air Separation Plant
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Air Separation Plant Control

• Current practice
– Empirical linear models & linear model predictive control
– Adequate for small, well defined operating regimes

• Production rate changes
– Motivated by electricity industry deregulation
– Exaggerated nonlinearities

• Plant startup & shutdown
– Operation over large operating regimes
– Strong nonlinearities

• Future needs
– More dynamic operating philosophy
– Nonlinear behavior more pronounced



Upper Column
N2 product

N2 waste

O2 product

• Packed column modeled 
with equilibrium stages

• Multiple liquid distributors 
• Feeds

– Reflux from lower column 
– Liquid air 
– Turbine air

• Withdrawals
– N2 product 
– N2 waste
– O2 product
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Aspen Simulation Model

• Column model RadFrac
– Dynamic component balances
– Steady-state energy balances

• Non-ideal vapor-liquid equilibrium
– NRTL for liquid phase
– Peng-Robinson for vapor phase
– Thermodynamic property data provided by Praxair

• PID controllers
– Reboiler level & overhead pressure

• Coupling to lower column
– Lower column effect on upper column described by empirical 

linear models identified from an Aspen model



LMPC Formulation for Upper Column

• Controller variables (2)
– Log transformed N2 waste 

composition
– Log transformed O2

product purity

• Manipulated variables (5)
– Feed flowrates of total air, 

liquid air & turbine air
– Liquid N2 addition rate to 

top of column
– Gaseous O2 production 

rate

• Constraints
– Linear step response 

model identified from 
step tests on Aspen 
model

– Manipulated variable 
bounds

– Composition bounds

• Tuning
– Sampling time = 1 min
– Prediction horizon = 4 hr
– Control horizon = 30 min
– Weighting matrices 

chosen by trial-and-error
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15% Production Rate Changes



15% Production Rate Changes



30% Production Rate Changes
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30% Production Rate Changes
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Summary – Part 1

• Linear model predictive control (LMPC) is the industry 
standard for controlling constrained multivariable 
processes

• LMPC performance depends strongly on the accuracy of 
the linear dynamic model

• LMPC can perform very poorly for highly nonlinear 
processes or moderately nonlinear processes that 
operate over wide regions

• An extension of LMPC based on nonlinear controller 
design models is needed for such processes



2. Introduction to Nonlinear Model Predictive 
Control

17

 N M P C  c ontroller 
 

Plant NLP solver 

Cost function 
+ 

constraints 

Nonlinear 
dynamic  

m o d e l 

Nonl inear 
state 

estimator 

u y  

x̂  



Desirable MPC Features

• Multivariable compensation
– No pairing of input & output variables required

• Constraint handling capability
– Input & output constraints explicitly include in controller 

calculation
• Model flexibility

– A wide variety of linear dynamic models can be accommodated
• Receding horizon formulation

– Allows updating of model predictions with measurement 
feedback

• On-line implementation
– Simple & robust quadratic program

• Would like to retain these features in nonlinear extension
18
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Nonlinear Model Predictive Control

• Nonlinear model
– Better prediction accuracy than linear model
– Much more difficult to obtain

• Nonlinear program (NLP)
– Necessitated by nonlinear model
– More difficult to implement than LMPC

• Nonlinear state estimator
– Necessary to generate unmeasured state variable

 N M P C  controller  
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Nonlinear Process Modeling

• First-principle models
– Requires understanding of process fundamentals
– Derived from conservation principles
– Parameters obtained from literature & estimation
– Most common approach for NMPC
– Profit NLC (Honeywell)

• Empirical models
– Artificial neural networks, NARMAX models, etc.
– Highly overparameterized & data intensive
– Poor extrapolation capabilities
– Suitability for NMPC being demonstrated
– Apollo (Aspen Technology)

• Development of accurate, computationally efficient nonlinear 
models remain a major obstacle to NMPC
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NMPC Solution Techniques

• Sequential solution
– Iterate between NMPC optimization & model solution codes
– Inefficient & non-robust for large problems 

• Simultaneous solution
– All discretized model variables posed as decision variables
– Produces large-scale NLP problems
– Routinely applied to low-dimensional process models
– Moderate size problems solvable with commercial codes
– Limited by problem size

• Multiple shooting
– Hybrid of the sequential & simultaneous methods
– Promising method under development



22

Model Discretization
• Fundamental model

– Nonlinear differential-algebraic 
equations (DAEs)

– Must be posed as algebraic 
constraints for NLP solution

– Requires discretization in time
– Many methods available

• Orthogonal collocation
– Highly accurate discretization 

method
– Model equations approximated 

at fixed collocation points
– Difficult to approximate sharp 

solutions
– Produces dense Jacobian 

matrix

 

0t  1t  2t  3t  4t  
i th finite element i +1 i -1 

• Finite elements
– Convenient method for 

NMPC
– Divide prediction horizon 

into N finite elements
– Place n collocation points 

in each finite element
– Accurate & efficient
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Simultaneous NMPC Formulation

• Basic elements
– Quadratic objective function
– Bounds on input & output variables
– Nonlinear algebraic equation constraints arising from 

model discretization
– Yield a nonlinear programming (NLP) problem

• NLP characteristics
– Many decision variables & constraints
– Computationally difficult
– Non-convex à existence of local minima
– Sensitive to equation & variable scaling
– Convergence not guaranteed
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Representative NMPC Products

Profit NLC
• Developed jointly by 

Honeywell and PAS Inc. & 
marketed by Honeywell

• Based on fundamental 
nonlinear models

• State estimation strategy 
not described

• Most reported applications 
to polymer processes

• Basell, British Petroleum, 
Chevron Phillips, Dow

Apollo
• Developed & marketed by 

Aspen Technology
• Based on empirical 

nonlinear models of gain-
time constant-delay form

• State estimation performed 
with extended Kalman filter

• Designed for polymer 
processes

• Industrial applications 
underway
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Process Perfecter from Pavilon Technologies & Rockwell Automation
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Summary – Part 2

• Nonlinear model predictive control (LMPC) is extension of 
LPMC based on nonlinear dynamic models & optimization

• NMPC offers the potential for improved performance when 
applied to highly nonlinear processes

• The most widely accepted NMPC approach is based on 
fundamental model discretization & simultaneous solution

• Commercial NMPC products are available & have been 
successfully applied to polymer processes

• A major challenge to successful NMPC application to other 
processes is real-time implementation



3. Real-Time Implementation Issues
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NMPC Problem Size

• Simultaneous solution approach 
– Every state variable at every discretization point is treated 

as a decision variable
– Typically produces a large NLP problem

• Problem size determined by:
– Order of the original dynamic model
– Number of discretization points
– Prediction & control horizons

• On-line implementation
– Requires repeated solution of NLP problem at each 

sampling interval
– Real-time implementation can be non-trivial
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Real-Time Implementation

• NMPC requires on-line solution of a large, non-convex 
NLP problem at each sampling interval
– Typical industrial sampling intervals ~1 minute
– Controller must reliably converge within the sampling interval

• Potential problems
– Controller converges to a poor local minimum
– Controller fails to converge within the sampling interval
– Controller diverges

• Real-time implementation techniques that mitigate 
these problems are essential
– Not a focus of typical academic studies
– Not openly reported by NMPC vendors & practitioners
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Controller Design Model

• Simultaneous solution method
– Well suited for processes that can be described by nonlinear 

models of moderate order (<50 DAEs)
– Yield reasonably sized NMPC problems (~10,000 decision 

variables)
– Directly applicable to most polymer reactor models
– Distillation column models are problematic due to their high 

order
• Nonlinear model order reduction

– Reduce model order while retaining the essential dynamical 
behavior

– Few generally applicable methods are available
– Single perturbation analysis, proper orthogonal decomposition
– Typically method must be customized to specific process
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Model Discretization

• Orthogonal collocation on finite elements
– Divide prediction horizon into N finite elements with each finite 

element corresponding to a sampling interval
– Place n collocation points in each finite element
– Typically use large N (~100) and small n (<5)

• Prediction horizon
– Chosen according to the steady-state response time
– Dynamics change slowly near end of prediction horizon where 

the inputs are held constant
• Finite elements of non-equal length

– Use regularly spaced elements over control horizon
– Use increasingly wider spaced elements after the control horizon
– Reduces number of discretization points
– Implementation problem dependent
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NLP Solution Code

• Wide variety of NLP codes are available
– Successive quadratic programming (NPSOL)
– Generalized reduced gradient methods (CONOPT)
– Interior point methods (IPOPT)

• Problem dependence
– Particular codes work better for specific problems
– General guidelines available but successful 

implementation requires match of NLP problem and code
– Typically must be determined by trial-and-error 

experimentation & code tuning
– Facilitated by general purpose optimization modeling tools 

such as AMPL and GAMS
– Problem/code matching reduces the number of iterations 

and/or the time per iteration
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Derivative Information

• First-order and second-order derivatives
– Required for discretized model & constraint equations 

with respect to the decision variables
– The Jacobian & Hessian matrices tend to be large & ill-

conditioned
– Can be numerically calculated by finite difference
– Very time consuming & subject to numerical errors

• Analytical derivative calculation
– Derivative exactly calculated from analytical formulas
– Facilitated by automatic differentiation capabilities of 

optimization modeling languages (AMPL)
– Improves NLP code efficiency & robustness
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Controller Initialization

• NLP solution
– An initial guess of the solution X0

k is required at 
each sampling interval k

– Convergence properties depend strongly on X0
k

– Need to generate a good X0
k near the optimal 

solution
• Warm start strategy

– Use converged solution from previous iteration Xk-1
to generate X0

k
– Set X0

k+j|k = Xk+j|k-1 and Xk+p|k = Xk+p-1|k-1
– Reduces the number of NLP iterations

• Caveats
– Not guaranteed to produce fast convergence
– Not effective immediately following setpoint or 

disturbance change

33
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Summary – Part 3

• The NMPC simultaneous solution method yields 
large & non-convex NLPs

• The NLP must be solved efficiently & robustly during 
each sampling interval

• Modifications of the basic NLP strategy are needed 
to facilitate real-time implementation
– Nonlinear model order reduction
– Customized model discretization strategies
– Matching of discretized model with NLP code
– Analytical derivative calculation
– Warm start strategies
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4. Nonlinear Control of an Air Separation 
Column
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Fundamental Model of Upper Column

• Assumptions
– Similar to those used for Aspen model development
– Also assume negligible vapor phase holdups & linear pressure 

drop across column
• Equations

– Dynamic mass & component balances
– Steady-state energy balances
– Non-ideal vapor-liquid equilibrium different from Aspen model
– Reboiler level & overhead pressure controllers
– Lower column effect on upper column described by empirical 

linear models
• Dimensionality

– 180 differential equations & 137 algebraic variables
– About 1900 intermediate variables for thermodynamic model
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Standard NMPC Formulation

• Problem characteristics
– 2 output & 5 input variables
– 317 state variables & 1900 thermodynamic variables
– Discretization produces ~500,000 decision variables
– Very challenging NLP problem that pushes the state-of-the-art
– Application of simultaneous solution method have been limited to

open-loop dynamic optimization
• Possible solutions

– Develop customized solution techniques that exploit problem 
structure

– Develop real-time implementation strategies
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Real-Time Implementation

• Use compartmental model
– Jacobian & Hessian matrices become more sparse
– Significantly reduces the time for each NLP iteration

• Allow finite elements to have non-uniform lengths
• Optimize the NLP solver options

– Requires code expertise
– Significantly reduces the number of NLP iterations

• Use warm start strategy
• Calculate derivative information analytically
• Less important strategies

– Scale the variables & constraint equations
– Implement setpoint changes as ramps or exponentials



Compartmental Modeling

• Fundamental idea
– Divide column into several sections (compartments)
– Only describe the overall (slow) dynamics of each compartment 

with a differential equation
– Describe the individual stage (fast) dynamics with algebraic 

equations
• Compartmental model characteristics

– Provides perfect steady-state agreement with fundamental 
model

– Fewer differential equations but more algebraic equations
– Highly accurate if a sufficient number of compartments is used

• Advantages for NMPC
– Compartmentalization yields a more sparse model structure that 

can be exploited by NLP codes

S. Khowinij et al., Separation and Purification Technology, 46, 95-109, 2005



Upper Column Compartmentalization

Model ODEs AEs
Fundamental 180 137
15 compartment 48 269
9 compartment 30 287
5 compartment 18 299

S. Bian et al., Computers & Chemical Engineering, 29, 2096-2109, 2005.



Comparison of Compartmental Models
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NMPC Formulation for Upper Column

• Largely unchanged from LMPC formulation
– Sampling time = 2 min
– Prediction horizon = 4.3 hr
– Control horizon = 20 min

• Discretized dynamic model equations
– Compartmental model
– Nonlinear equality constraints

• NLP solution
– Interior point code IPOPT within AMPL
– Less success with popular solver CONOPT
– AMPL coupled to fundamental model in MATLAB
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NMPC Formulation for Upper Column



Reducing Real-Time Computation

Initial CPU time ~40 min/iteration

I. Use finite elements with non-
uniform lengths

II. Use compartment model
III. Optimize the NLP solver options
IV. Analytically calculate the 

Jacobian & Hessian matrices
V. Scale the variables & constraints
VI. Use warm start strategy
VII. Implement setpoint changes as 

ramps

Final CPU time ~2 min/iteration
12780 decision variables & 12730 

constraints
Contribution of each strategy to reduction
in worst case NMPC CPU time
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15% Production Increase
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30% Production Decrease
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30% Production Decrease
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NMPC CPU Times per Iteration

15% Production Increase 30% Production Decrease
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Summary – Part 4

• Direct application of NMPC to the air separation column 
yielded a very large NLP problem not suitable for real-
time implementation

• The combination of reduced-order modeling and several 
real-time implementation strategies reduced computation 
time by 2000%

• NMPC provided good performance for large production 
rate changes that proved problematic for LMPC

• NMPC development required considerable time and 
effort
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Final Comments

• NMPC is a promising technology for nonlinear plants 
subject to large dynamic changes

• Availability of an accurate nonlinear model is 
paramount

• Real-time implementation strategies are often 
necessary for reducing computation

• Nonlinear receding horizon estimation is a promising 
approach for generating estimates of unmeasured 
state variables (not shown here)

• The time and effort required for NMPC development 
and maintenance must be justified 


