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Figure 27.3.  The elements of DMC: The “reference trajectory” is the set-point line.

1. Limitations of Linear Model Predictive
Control




Linear Model Predictive Control (LMPCY==/

e Background
— Constrained multivariable control technology
— Requires availability of linear dynamic model
— Chemical process industry standard

e Real-time implementation
— Repeated on-line solution of optimization problem
— Receding horizon formulation
— Computationally efficient & robust quadratic program

« Commercial technology
— DMCplus (Aspen Technology)
— RMPCT (Honeywell)
— Many others
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Figure 27.3. The elements of DMC: The “reference trajectory” is the set-point line.
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Standard LMPC Formulation

Min E = [Yk+1 _ YSID]T\NG[YK+1 _ YSIO]+ DU -frkWDU DU fk' I\/Ianipulated variables (U)
i | | — Manipulated to minimize
+ [Uf,k - US"O]TWG[Uf,k - U Sp] objective function
St Y, =S,DU,, + [SpDU T dk] — Penalize deviations for target

g - +DDU values (UsP)
.k~ Ua f .k — Hard constraints on absolute

Unn U EU values & rate-of-changes
DU .., EDU;, £DU e Equality constraints
Y. EY EY.. — Linear step response model

identified from plant tests
e Tuning parameters
— Sampling time
— Prediction horizon
— Control horizon
— Weighting matrices

e Controlled variables (Y)
— Penalize deviations from target
values (YsP)

— Hard lower & upper bound
constraints




Migin Heat




Ailr Separation Plant Control

Current practice
— Empirical linear models & linear model predictive control
— Adequate for small, well defined operating regimes

Production rate changes
— Motivated by electricity industry deregulation
— Exaggerated nonlinearities
Plant startup & shutdown

— Operation over large operating regimes
— Strong nonlinearities

Future needs
— More dynamic operating philosophy
— Nonlinear behavior more pronounced
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Aspen Simulation Model

Column model RadFrac
— Dynamic component balances
— Steady-state energy balances

Non-ideal vapor-liquid equilibrium
— NRTL for liquid phase

— Peng-Robinson for vapor phase
— Thermodynamic property data provided by Praxair

PID controllers
— Reboiler level & overhead pressure

Coupling to lower column

— Lower column effect on upper column described by empirical
linear models identified from an Aspen model
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LMPC Formulation for Upper

e Controller variables (2)

— Log transformed N, waste
composition

— Log transformed O,
product purity

 Manipulated variables (5)

— Feed flowrates of total air,
liquid air & turbine air

— Liquid N, addition rate to
top of column

— Gaseous O, production
rate

e Constraints

— Linear step response
model identified from
step tests on Aspen
model

— Manipulated variable
bounds

— Composition bounds

e Tuning
— Sampling time = 1 min
— Prediction horizon =4 hr
— Control horizon = 30 min
— Weighting matrices
chosen by trial-and-error
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15% Production Rate Changes
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15% Production Rate Changes
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30% Production Rate Changes
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Summary — Part 1

Linear model predictive control (LMPC) is the industry
standard for controlling constrained multivariable
processes

LMPC performance depends strongly on the accuracy of
the linear dynamic model

LMPC can perform very poorly for highly nonlinear
processes or moderately nonlinear processes that
operate over wide regions

An extension of LMPC based on nonlinear controller
design models is needed for such processes
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NMPC controller

Plant

Cost function
+

constraints

ST [

X Nonlinear
N State <
1 estimator

2. Introduction to Nonlinear Model Predictive

Control
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Desirable MPC Features

Multivariable compensation
— No pairing of input & output variables required

Constraint handling capability

— Input & output constraints explicitly include in controller
calculation

Model flexibility
— A wide variety of linear dynamic models can be accommodated

Receding horizon formulation

— Allows updating of model predictions with measurement
feedback

On-line implementation
— Simple & robust quadratic program

Would like to retain these features in nonlinear extension
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Nonlinear Model Predictive Control

NM PC controller
u y
> —_—
l Plant
Cost function Nonlinear
+ state <
constraints estimator

 Nonlinear model
— Better prediction accuracy than linear model
— Much more difficult to obtain
* Nonlinear program (NLP)
— Necessitated by nonlinear model
— More difficult to implement than LMPC

 Nonlinear state estimator
— Necessary to generate unmeasured state variable
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Nonlinear Process Modeling

First-principle models

— Requires understanding of process fundamentals
— Derived from conservation principles

— Parameters obtained from literature & estimation
— Most common approach for NMPC

— Profit NLC (Honeywell)
Empirical models

— Artificial neural networks, NARMAX models, etc.
— Highly overparameterized & data intensive

— Poor extrapolation capabilities

— Suitability for NMPC being demonstrated

— Apollo (Aspen Technology)

Development of accurate, computationally efficient nonlinear
models remain a major obstacle to NMPC
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NMPC Solution Techniques

e Seqguential solution

— lterate between NMPC optimization & model solution codes
— Inefficient & non-robust for large problems

e Simultaneous solution
— All discretized model variables posed as decision variables
— Produces large-scale NLP problems
— Routinely applied to low-dimensional process models
— Moderate size problems solvable with commercial codes
— Limited by problem size
e Multiple shooting

— Hybrid of the sequential & simultaneous methods
— Promising method under development
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Model Discretization

« Fundamental model W

— Nonlinear differential-algebraic
equations (DAES)

— Must be posed as algebraic
constraints for NLP solution

— Requires discretization in time
— Many methods available e FEinite elements

» Orthogonal collocation — Convenient method for

— Highly accurate discretization NMPC
method

— Model equations approximated
at fixed collocation points

K heewececeene

t, t
i th finite element

~—t
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=

— Divide prediction horizon
Into N finite elements

— Difficult to approximate sharp — Place n collocation points
solutions In each finite element
— Produces dense Jacobian — Accurate & efficient

matrix
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Simultaneous NMPC Formulation

 Basic elements
— Quadratic objective function
— Bounds on input & output variables

— Nonlinear algebraic equation constraints arising from
model discretization

— Yield a nonlinear programming (NLP) problem
 NLP characteristics

— Many decision variables & constraints Min  #(X)

— Computationally difficult St. g(X)£Q

— Non-convex a existence of local minima h(X)=0

— Sensitive to equation & variable scaling XHEXE X"

— Convergence not guaranteed
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Representative NMPC Products

Profit NLC

Developed jointly by
Honeywell and PAS Inc. &
marketed by Honeywell

Based on fundamental
nonlinear models

State estimation strategy
not described

Most reported applications
to polymer processes

Basell, British Petroleum,
Chevron Phillips, Dow

Apollo

Developed & marketed by
Aspen Technology

Based on empirical
nonlinear models of gain-
time constant-delay form

State estimation performed
with extended Kalman filter

Designed for polymer
processes

Industrial applications
underway

Process Perfecter from Pavilon Technologies & Rockwell Automation
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Summary — Part 2

Nonlinear model predictive control (LMPC) is extension of
LPMC based on nonlinear dynamic models & optimization

NMPC offers the potential for improved performance when
applied to highly nonlinear processes

The most widely accepted NMPC approach is based on
fundamental model discretization & simultaneous solution

Commercial NMPC products are available & have been
successfully applied to polymer processes

A major challenge to successful NMPC application to other
processes is real-time implementation

25



NMPC controller y
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Cost function X Nonlinear
+ < State <
constraints estimator

3. Real-Time Implementation Issues
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NMPC Problem Size

e Simultaneous solution approach

— Every state variable at every discretization point is treated
as a decision variable

— Typically produces a large NLP problem

 Problem size determined by:
— Order of the original dynamic model
— Number of discretization points
— Prediction & control horizons

e On-line implementation

— Requires repeated solution of NLP problem at each
sampling interval

— Real-time implementation can be non-trivial
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Real-Time Implementation

NMPC requires on-line solution of a large, non-convex
NLP problem at each sampling interval

— Typical industrial sampling intervals ~1 minute
— Controller must reliably converge within the sampling interval

Potential problems
— Controller converges to a poor local minimum
— Controller fails to converge within the sampling interval
— Controller diverges
Real-time implementation techniques that mitigate
these problems are essential
— Not a focus of typical academic studies
— Not openly reported by NMPC vendors & practitioners
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Controller Design Model

 Simultaneous solution method

Well suited for processes that can be described by nonlinear
models of moderate order (<50 DAES)

Yield reasonably sized NMPC problems (~10,000 decision
variables)

Directly applicable to most polymer reactor models

Distillation column models are problematic due to their high
order

 Nonlinear model order reduction

Reduce model order while retaining the essential dynamical
behavior

Few generally applicable methods are available
Single perturbation analysis, proper orthogonal decomposition
Typically method must be customized to specific process
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Model Discretization

« Orthogonal collocation on finite elements

— Divide prediction horizon into N finite elements with each finite
element corresponding to a sampling interval

— Place n collocation points in each finite element
— Typically use large N (~100) and small n (<5)

e Prediction horizon
— Chosen according to the steady-state response time
— Dynamics change slowly near end of prediction horizon where
the inputs are held constant
* Finite elements of non-equal length
— Use reqgularly spaced elements over control horizon
— Use increasingly wider spaced elements after the control horizon
— Reduces number of discretization points
— Implementation problem dependent
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NLP Solution Code

« Wide variety of NLP codes are available
— Successive guadratic programming (NPSOL)
— Generalized reduced gradient methods (CONOPT)
— Interior point methods (IPOPT)

 Problem dependence
— Particular codes work better for specific problems

— General guidelines available but successful
Implementation requires match of NLP problem and code

— Typically must be determined by trial-and-error
experimentation & code tuning

— Facilitated by general purpose optimization modeling tools
such as AMPL and GAMS

— Problem/code matching reduces the number of iterations
and/or the time per iteration
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Derivative Information

e First-order and second-order derivatives

— Required for discretized model & constraint equations
with respect to the decision variables

— The Jacobian & Hessian matrices tend to be large & ill-
conditioned

— Can be numerically calculated by finite difference
— Very time consuming & subject to numerical errors

« Analytical derivative calculation

— Derivative exactly calculated from analytical formulas

— Facilitated by automatic differentiation capabilities of
optimization modeling languages (AMPL)

— Improves NLP code efficiency & robustness
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Controller Initialization

e NLP solution

— An initial guess of the solution X° isrequired at  Min  f(X)
each sampling interval k

— Convergence properties depend strongly on X0, St 9(X)£0
— Need to generate a good X° near the optimal h(X)=0

solution ] U
 Warm start strategy X"EXEX

— Use converged solution from previous iteration X, ,
to generate X%,

— Set X%k = Xisjier AN Xioie = Xieop-ajer
— Reduces the number of NLP iterations
e Caveats
— Not guaranteed to produce fast convergence

— Not effective immediately following setpoint or
disturbance change
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Summary — Part 3

« The NMPC simultaneous solution method yields
large & non-convex NLPs

 The NLP must be solved efficiently & robustly during
each sampling interval

* Modifications of the basic NLP strategy are needed
to facilitate real-time implementation

— Nonlinear model order reduction

— Customized model discretization strategies

— Matching of discretized model with NLP code
— Analytical derivative calculation

— Warm start strategies

34



4. Nonlinear Control of an Air Separation
Column
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Fundamental Model of Upper Column“=/

e Assumptions
— Similar to those used for Aspen model development

— Also assume negligible vapor phase holdups & linear pressure
drop across column

« Equations
— Dynamic mass & component balances
— Steady-state energy balances
— Non-ideal vapor-liquid equilibrium different from Aspen model
— Reboiler level & overhead pressure controllers

— Lower column effect on upper column described by empirical
linear models

 Dimensionality

— 180 differential equations & 137 algebraic variables
— About 1900 intermediate variables for thermodynamic model
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Standard NMPC Formulation

Problem characteristics

— 2 output & 5 input variables

— 317 state variables & 1900 thermodynamic variables

— Discretization produces ~500,000 decision variables

— Very challenging NLP problem that pushes the state-of-the-art

— Application of simultaneous solution method have been limited to
open-loop dynamic optimization

Possible solutions

— Develop customized solution techniques that exploit problem
structure

— Develop real-time implementation strategies

37



Real-Time Implementation

Use compartmental model
— Jacobian & Hessian matrices become more sparse
— Significantly reduces the time for each NLP iteration

Allow finite elements to have non-uniform lengths

Optimize the NLP solver options
— Requires code expertise
— Significantly reduces the number of NLP iterations

Use warm start strategy
Calculate derivative information analytically

Less important strategies
— Scale the variables & constraint equations
— Implement setpoint changes as ramps or exponentials
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Compartmental Modeling

 Fundamental idea
— Divide column into several sections (compartments)

— Only describe the overall (slow) dynamics of each compartment
with a differential equation

— Describe the individual stage (fast) dynamics with algebraic
equations
 Compartmental model characteristics

— Provides perfect steady-state agreement with fundamental
model

— Fewer differential equations but more algebraic equations
— Highly accurate if a sufficient number of compartments is used

« Advantages for NMPC

— Compartmentalization yields a more sparse model structure that
can be exploited by NLP codes

S. Khowinij et al., Separation and Purification Technology, 46, 95-109, 2005
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NMPC Formulation for Upper Column“=/

e Largely unchanged from LMPC formulation
— Sampling time = 2 min
— Prediction horizon = 4.3 hr
— Control horizon = 20 min

« Discretized dynamic model equations
— Compartmental model
— Nonlinear equality constraints
 NLP solution
— Interior point code IPOPT within AMPL
— Less success with popular solver CONOPT
— AMPL coupled to fundamental model in MATLAB
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Data files on hard dnve
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Reducing Real-Time Computation

Initial CPU time ~40 min/iteration

. Use finite elements with non-
uniform lengths

II. Use compartment model
lll.  Optimize the NLP solver options

V. Analytically calculate the
Jacobian & Hessian matrices

V. Scale the variables & constraints
VI. Use warm start strategy

VII. Implement setpoint changes as
ramps

Final CPU time ~2 min/iteration

12780 decision variables & 12730
constraints

Contribution of each strategy to reduction
In worst case NMPC CPU time




15% Production Increase
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Summary — Part 4

Direct application of NMPC to the air separation column

yielded a very large NLP problem not suitable for real-
time implementation

The combination of reduced-order modeling and several

real-time implementation strategies reduced computation
time by 2000%

NMPC provided good performance for large production
rate changes that proved problematic for LMPC

NMPC development required considerable time and
effort
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Final Comments

NMPC iIs a promising technology for nonlinear plants
subject to large dynamic changes

Avalilability of an accurate nonlinear model Is
paramount

Real-time implementation strategies are often
necessary for reducing computation

Nonlinear receding horizon estimation is a promising
approach for generating estimates of unmeasured
state variables (not shown here)

The time and effort required for NMPC development
and maintenance must be justified
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