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Type 1 Diabetes Mellitus
• About one in every 400 to 600 children and adolescents has type 1 

diabetes mellitus (T1DM)
– National Diabetes Fact Sheet, 2005, 

Centers for Disease Control and PreventionCenters for Disease Control and Prevention

• Complications of T1DM reduce life expectancy by 20 years through 
micro- and macro-vascular disease
– Heart disease and stroke
– Blindness
– Kidney disease

Nervous system disease– Nervous system disease

• Evidence that intensive insulin therapy (IIT) reduces complications
– Diabetes Control and Complications Trial Research Group, 1993p p,

• Increased hypoglycemic events with IIT
– Diabetes Control and Complications Trial Research Group, 1993



The Cost of Diabetes

(billions of $)
Costs of Diabetes

[ADA 2003]



Glucose Homeostasis



(i) Automatic Control

The Glucose – Insulin “Loop”

?
(i) Automatic Control

(iii) Efficient Solution

(ii) Day‐to‐day Control?

Glucose Insulin
DeliveryMeasurement Delivery



Normalization of Glycemia

Healthy Individual (MD) Optimized Type 1 Patient

 
Figure  1 Twenty  four hour continuous g lucose t racing o f a subject without diabetes. This is
the level of glucose  regulation  we aim for in our deve lopment of a closed-loop controller for

 
Figure 12 Twenty four hour continuous glucose tracing for a subject  with type 1 diabetes 
mellitus after correcting basal and bolus insulin profiles. Note elimination of glucose

an artificial pancreas.  
Unpublished data from NIH  funded  study  (R01 -DK068706,  R01-DK068663).  

excursions, hyper- and hypoglycemia.
Unpublished data from NIH funded study (R01-DK068706, R01-DK068663).  



Sampled Data Sampled Data –– Blood GlucoseBlood Glucose



UCSB/Sansum Approach

Feedback control algorithm
Core insulin delivery algorithm

Ellingsen et al., 2009, J. Diabetes Sci. Tech.; Percival et al., submitted, 2009 

Hypoglycemia prediction
Alarms and pump shut‐off

Dassau et al., 2008, Diabetes

Meal detection
Augment control algorithm

Dassau et al., 2008, Diabetes Care

Iterative learning control
Account for intra‐subject variations

Zisser et al  2005 Diabetes Technol  Ther ; Wang et al  2009  IEEE Trans Biomed Eng  2009

Dassau et al., 2008, Diabetes Care

Hardware‐in‐the‐loop trials
Testing communication protocols of off‐the‐shelf devices

Zisser et al., 2005 Diabetes Technol. Ther.; Wang et al., 2009, IEEE Trans Biomed Eng, 2009

Dassau et al  2009  Diabetes Technol  TherDassau et al., 2009, Diabetes Technol . Ther



Gl cose SensingGlucose Sensing
and Insulin Delivery



Current State of the Art:
Self-Monitoring Blood Glucose Meters (SMBG)  

[Graham, P&T, 2005]



Benefits of Continuous Glucose Monitoring

Standard Blood Glucose Monitoring Continuous Glucose Monitoring

Highs Missed 

Lows Missed 

Source: Medtronic Diabetes modified by H. Zisser



Receiver for Sensor

Source: DexCom,Inc.



Archival Data Analysis

Source: Medtronic Diabetes



Continuous Subcutaneous Insulin Infusion (CSII)

• Patients can easily accommodate metabolic changes
S t b l t• Set basal rate

• Deliver manual boluses

http://www.endotext.org/diabetes



Opportunities for 
Process S stems EngineeringProcess Systems Engineering:

SMBG Systems



Meal Bolus Dosing Analogy: Run-to-Run Control
[Doyle III et al., 2001; Zisser et al., 2005; Owens et al., 2006]

• Emerged from robotics and semiconductor processing problems 
where “repetition” is key
– emphasis on measurement-based framework
– batch-to-batch optimization ⇒ iteratively converge to optimal input 

profile in fewest number of (sub-optimal) runs
t i l t i t ( d diti ) iti l l t f th– terminal constraints (end-conditions) are a critical element of the 
optimization problem

Concept: Use meal cycle (run)• Concept: Use meal cycle (run) 
to manage diabetes
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Clinical Evaluation of Run-to-Run Control 

Glucose (60 min) GlGlucose (60 min)

Insulin Amount

Glucose 
Bounds

Summary of Trial Results: 
• 40% dramatic improvement Insulin Amount

Day

• 40% dramatic improvement
• 30% maintained normoglycemia
• 30% complications

Trial Results Suggested:

Glucose (90 min)

Trial Results Suggested:
• Changing timing is inconvenient for subject, and has negligible impact
• Fixed timing of measurements is not realistic to meet consistently

Insulin Timingg

Day



Modified Algorithm
rate of 

postprandial 
glucose rise

insulin 
meal bolus

• Only changing insulin dose, timing always fixed to the beginning of the meal

• Still require two post-meal measurements
– First measurement 60-90 minutes after the start of the meal
– Second measurement 30-60 minutes after the first

For each meal denote these times as:– For each meal, denote these times as:
TB1, TB2, TL1, TL2, TD1, TD2

• Specific uncertainties:
– Measurement timing

M t i

• Sketch of robustness analysis

– Measurement noise

– Meal timing

– Meal carbohydrate contentMeal carbohydrate content

– Meal estimate



Clinical Evaluation of New Algorithm

• 11 subjects with type 1 diabetes & CSII pumps

• Phase 1
– Optimized basal rates
– Brought out of control (1h post-prandial 170–200 mg/dl)
– Lunch only
– Carbohydrate content kept constant
– Algorithm adjusted dosing over 2 weeks

• Phase 2
– All three meals
– Carbohydrate content varied
– Algorithm adjusted dosing over 2–3 weeks



Challenge in Data Clustering



Medically-Inspired Performance Measure



Modifications for Phase 2



Clinical ResultsClinical Results



Implementation of Run-to-Run Controller
on PDA Platformon PDA Platform

[Gema Garcia Saez and colleagues]
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Opportunities for 
P S t E i iProcess Systems Engineering:

CGM Systems



Model-Based Control Approach for Diabetes
[Parker Doyle III Peppas IEEE Trans Biomed Eng 1999][Parker, Doyle III, Peppas, IEEE Trans. Biomed. Eng., 1999]

Model-based
AlgorithmD i d

Controller Patient

AlgorithmDesired
Glucose Level GlucoseInsulin

-

Model
Kalman Filter -

Update
Filter

Compartmental Model

Key tenet of Robust Control Theory:Key tenet of Robust Control Theory:
Achievable performance is directly tied to model accuracy 



Pumps and Sensors Communicate to a Shared 
Platform ‐APS



Artificial Pancreas (Artificial Pancreas (ββ‐‐cell) Software cell) Software 

Human Machine Interface

Sensor & 
Capillary

Rate or amount
Capillary
measurements

Delivered
insulin

Insulin delivery

Event log

Physician override

Capillary BG



Hardware-in-the-Loop Testing

• A complete artificial β-cell system testing 
platform, allowing:p , g

Systematic analysis
Component Verification and Validation
Complete system V&V
PnP for in silico patientsPnP for in silico patients
PnP for control algorithms

• Realistic virtual clinical trial

Dassau et al., 2007, 7th DTM, San Francisco CA, USA
Dassau et al., 2008, "In Silico Evaluation Platform for Artificial Pancreatic β−Cell Development – a Dynamic Simulator for Closed-
Loop Control with Hardware-in-the-Loop." Diabetes Technol Ther., 2009



Algorithm Engineering MPC for T1DM

• Patient Model Identification

• Disturbance Estimation (i.e., meals)

• Programming Implementation (mpMPC)g g p ( p )

• Safety Constraints (Insulin-on-Board)



Meal Detection

Lunch Detection < 30 min

2 Hours

13 y.o. male, A1c=8.8 



Classes of Control Action for Meals
F df d t l• Feedforward control
– User intervention: clicking a button, thus initiating an insulin 

bolus

• Strictly feedback method
• Totally automated: the algorithm will respond only after a 

sufficiently large rise in glucosesufficiently large rise in glucose

• Discrete meal detection
• Safety net: this will trigger an insulin bolus as part of an 

MealMeal
FeedforwardFeedforward MealMeal Strictly FeedbackStrictly Feedback

MealMeal
Discrete meal detectionDiscrete meal detection

algorithm using continuous feedback from a CGM 
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Meal Detection – Voting Algorithm
• Data acquisition

CGMS Data
• Data acquisition
• Algorithms: 

– Glucose profile estimation by Kalman Filter  
(KF) G

Kalman Filter 
EstimationG

G

(KF), GKF

– Glucose rate (velocity) estimation using 
Backward Difference G’BD& KF ,G’KF , 
(GKF)’

BD

ROC Calculation 
(BD)

G’KF 
G”KF

GKF

( KF) BD 

– Glucose velocity rate (acceleration) 
estimation by KF, G”KF

• Detection procedure:
Detection 
AlgorithmNext 

G’BD , (GKF)’
BD

p
– Satisfying threshold conditions 
– Heuristics
– Tradeoff between speed of response and 

go t

Voting 
system

data 
point

Nop p
accuracy in flagging a meal 

• Voting algorithm
– Minimizing false detections

system

l fl

Yes

g
• Meal flag to the controller Meal flag

[Dassau et al., Diabetes Care, 2008]



Detection of a Single Meal

Meal flagMeal flag

~12 minBreakfastBreakfast 1212 min.min.

~12 mg/dL 9 9 min.min.
10 10 min.min.
12 12 min.min.



Multi-Parametric Programming Implementation
[Percival et al., AIChE, 2008]

• Biomedical devices are subject to stringent 
FDA regulation

Restrictions on online optimization

[ , , ]

– Restrictions on online optimization 
permissible

– Prior risk analysis mandatory

• MPC is transformed into a multi parametric• MPC is transformed into a multi-parametric 
program (mpMPC)

– Offline optimization over state-space region 
of interest

• Lookup table of optimal control laws
– Online optimization

• Determine critical region in state-space
• Evaluate an affine function of the state vector

• Simulated response to announced 60 g 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
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Closed-loop
Setpoint
Desired range
Predicted output
Open-loop

• Simulated response to announced 60 g 
CHO meal

– Bolus-style controller response
– Hyperglycemia and hypoglycemia avoided
– Euglycemia restored in under three hours
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Insulin delivered
Basal setpoint
Predicted moves

1000
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on– Euglycemia restored in under three hours
– Variations in the state vector change the 

critical region used to evaluate the control 
law
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Controller Derivation
[Dua, Doyle III, Pistokopoulos, IEEE TBME, 2006]



Safety Constraints – Insulin on Board (IOB)

Residual insulin (IOB) remains 
active for up to 8 hours

Clinicians and bolus “wizards” 
factor in IOB

Constraint formulation
Choose IOB curve

Time–Action Profile Of Insulin Glargine Following Subcutaneous 
Injection. Glycemic clamp study. [Taken from Lepore et 
al Diabetes 49:2142 2148 2000]

Calculate IOB
Allow insulin for correction
Allow insulin for meals
C t i t l l ith 60

80

100

]

 

2 hour curve
3 hour curve
4 hour curve
5 hour curve
6 hour curve

al, Diabetes 49:2142–2148, 2000]

Constrain control algorithm
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7 hour curve
8 hour curve

0 1 2 3 4 5 6 7 8
Time [hr]

Walsh and Roberts, Pumping Insulin, 2006
Zisser et al., Diabetes TechnolTher, 2008
Ellingsen et al., J Diabetes SciTechnol, 2009



Clinical Evaluation

FDA requirements
Investigational Device Exemption (IDE)
Detailed proof of safety of protocol/software
Master file already acknowledged for APS

Phase I – in silico trial
UVa-Padova simulation platform
300 virtual subjects
Master file already acknowledgedMaster file already acknowledged
Evaluate same clinical protocol

Phase II – human subject studies
Initial studies underway in Israel
Planned studies in Santa Barbara in late 2009
Large international trial (multi site) planned for 2010Large international trial (multi-site) planned for 2010



In Silico Trial Results
[100 adult subjects][100 adult subjects]



Clinical Trial Results
[Schneider Children’s Medical Center of Israel, Tel Aviv]



Pieces of the Puzzle Are Coming Together



Looking Towards the Future:

Safety Issues

Human VariabilityHuman Variability



Hypoglycemia Prediction
• Intensive insulin therapy has an 

inherent risk of nocturnal 
hypoglycemia Begins alarming at 

11:39 PM with
Had been alarming since 2:39 
AM when glucose was 63– No response to any alarm

– Threshold alarms are 
insufficient 

11:39 PM with 
glucose of 64 mg/dL.

AM when glucose was 63 
mg/dL, lowest 50 mg/dL.  

Prediction of pending 
hypoglycemic event 
& pump suspension 

Seizure

DirecNet

Dassau et al. 68th ADA meeting San Francisco CA, 06.08.08



Hypoglycemia Prediction System
[collaboration w/ Bruce Buckingham, Stanford Medical]

• A Hypoglycemia Prediction System (HPS) was developed using 
data derived from 21 Navigator studies which assessed Navigator g g
function over 24 hours in children with Type 1 diabetes in clinical 
research centers (CRC)*

• The HPS functionality was confirmed using a separate dataset from 
22 CRC admissions of T1DM subjects
– mean age = 20 years (range 6 -38) 

hypoglycemia was induced by gradual increases in the basal insulin– hypoglycemia was induced by gradual increases in the basal insulin 
infusion rate by a mean of 180% 

– 18 of the 22 subjects (82%) reached a glucose value of ≤ 60 mg/dL 

*DirecNet, Diabetes Care



Variability in the Human Body: Stress Effects

Clinical evaluation of the effect of Prednisone
[Bevier et al 2007][Bevier, et al., 2007]



Summary
• Process systems engineering offers tremendous capability to 

enable the artificial pancreas

• Promising technologies:
– Run-to-run control

M d l di ti t l– Model predictive control
– Parametric programming implementation

M h ll till i• Many challenges still remain:
– Patient model identification
– Reliable (long-term) sensors
– Transport and site issues
– Patient variability (incl. stress, activity, etc.)
– Regulatory issues
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