Chemical Product Design: What Is it? Why is it important? How is it done?

Michael Hill Columbia University

Kevin Joback Molecular Knowledge Systems

What Is a Chemical Product?

Functional material which meets specific need

- *Performance chemicals*
- Semi-conductors
- Pharmaceuticals
- " Paints
- Personal Care products
- Processed foods
- "Household products
- " Devices

Commodities vs. Products

Commodities

- Compositional spec
- " Generic
- "Low margin
- " High volume
- " Process-centered

Products

- Performance spec
- " Differentiated
- " High margin
- Often low volume
- " Product-centered

Trend Affecting ChE Employment

Cussler & Wei, AIChE J, 49 1073

Recent graduates continue to be hired by businesses producing:

- *["] performance chemicals*
- *formulated pharmaceuticals semi-conductor products etc.*

etc. etc. etc.

A Shift From Our Traditional Role

- Chemical engineering community traditionally responsible for process development and manufacturing
- "Left product design/development to the chemists, who "threw product over the wall"
- Chemical engineers tracked product purity and costs; other product issues considered irrelevant

How are Chemical Products Developed?

- Industrial approach has been intuitive/experimental
 - Experienced product developer draws on vast knowledge of previous formulations/properties
 - Multivariate trade-offs determined through trial-and-error experimentation
 - Inefficient and resource intensive, typically involving hundreds of prototypes
- Process typically developed after formulation
 - Ignores large impact process conditions can have on product properties
 - > Resulted in sub-optimal products

Accelerating Product Development

- 1. Design of Experiments (DOE)
 - ["] Factorial experimentation
 - ["] Statistical analysis of variance
 - *Raises experimental efficiency, but impractical to include more than several variables at time*
 - "Best suited for narrowly defined problems

Accelerating Product Development

- 2. High-throughput experimentation (HTE)
 - " Robotics
 - " Combinatorial chemistry
 - ["] Parallelization

Is this sufficient?

Courtesy of CCRI, University of Ottawa

What Determines Product Properties?

Physico-chemical properties of components and Microstructure, which is influenced by process history

Cryo-SEM micrographs of a lamellar structured hair conditioner manufactured under low deformation rates (left) and high deformation rates (right). Although having the identical formulation, viscosities differ by order of magnitude. (Edwards, *IChemE NWBP* 9, 1998)

And the Combinatorial Explosion

Consider a typical mass market hand cream:

Formulation Decisions	
Water (1)	1
Emollients (select 2 of 10)	10*9
Surfactants (select 2 of 10)	10*9
Humectants (select 1 of 6)	6
Polymers (select 2 of 10)	10*9
Active/emotive (select 1 of 3)	3
Fragrance (1)	1
Preservative (1)	1
Processing Decisions:	
Order of Addition	11!
Operational decisions (after each ingredient)	
Change temp?	2 ¹¹
High sheer?	2 ¹⁰
Emulsification configurations (2 stages)	
Equipment selection (2 of 20)	20 ²
Bypass?	2
Recycle?	2

10²³ alternatives

Accelerating Product Development

- "High Throughput Experimentation is not the ultimate answer
 - > Parallelization raises experimental efficiency
 - Yet infeasible to generate massively parallel alternatives
 - Impractical to replicate process conditions at the scale of typical HTE operation

How do we deal with the combinatorial explosion?

Analogous to Process Design

- ["] Process designer needs to choose from 10⁹ potential designs
 - . Systematically identifies and eliminates inferior designs
 - . Eventually one or two designs proven by experimentation in pilot plant
- Product designer needs systematic way to identify product designs while minimizing experimentation

Replace Traditional Product Dev't?

- ["] Becomes first phase of Product Development
- Product design should specify a small set of formulations likely to meet requirements, confirmed or refined through experimentation
- Allows experimental program of chemical product development to be more focused

Chem Engineers Should Be Good at This

- Designing a product is not just about knowing physical properties of compounds and mixtures
 - When product is used, often subjected to stresses, temperature and concentration gradients, etc.
 - Behavior often controlled by transport phenomena, reaction kinetics, thermodynamics: "a process"
 - A good product designer understands same principles as good process designers
- Same fundamental knowledge base needed to understand product manufacture can help in designing products

Similarities & Differences

Process Design

- Product is specified but process is not
- Search technique to select among process alternatives
- Focus on models of manufacturing process
- Goal is lowest cost
 manufacturing process

Product Design

- Neither product nor process is specified
- Search technique to select among product alternatives
- Focus on models of product properties
- Goal is added value through enhanced product properties

Product Design Algorithm

Cussler & Moggridge*:

- 1. Identify customer needs
- 2. Generate ideas to meet those needs
- 3. Select among the ideas
- 4. Manufacture the product

* Chemical Product Design, 2nd Ed (2011)

The Devil is in the Detail

- Creativity techniques can help, but need more than just brainstorming and selection
- Need a generic methodology to systematically transform each novel approach into set of product alternatives, and quantitative analysis of those alternatives

Designing Homogeneous Products

- Properties result solely from components and not a product microstructure generated during processing
- "Product and process can be designed sequentially rather than simultaneously

Aircraft Deicing Fluid

What must this product do?

- " Melt ice under ambient conditions
- ["] Liquid of appropriate viscosity
- % Adequate wetting/spreading
- "Non-corrosive
- "Biodegrade at acceptable rate
- ″etc.

What Basic Mechanism?

Heat generation?
 Open system; likely refreeze
 Freezing point depression?
 If depression is sufficient
 Prevent ice from sticking?

Sufficient by itself?

Design Strategy

- Select a freezing point depressant with acceptable biodegradation rate as main component
- Wiscosity, wetting/spreading and noncorrosion assured through additives

Use of Physical Property Models

Model for fp depression (eutectic behavior)

- Models for biodegradation rate and oxygen demand
- " Search for acceptable candidates

Structured Chemical Products

Complex, multiphase materials with properties determined by physico-chemical properties of components *and* product microstructure

- " Emulsions
- " Granulated powders
- " Compressed powders
- " Extruded solids
- " Suspensions
- " Other complex fluids

Designing Structured Products

- Microstructure determined by interaction of components and manufacturing process
- Since microstructure influences properties, product and process must be designed simultaneously
- A generic design methodology should systematically generate alternatives, and quantitatively analyze those alternatives

Available Techniques

["] Heuristics

- . Systematically generate/eliminate alternatives
- . Good designs that are quickly found usually preferred over slow-to-find optimal solutions
- . Required when data are limited, e.g. early stages of design
- "Mathematical Programming
 - . Optimize set of all potential alternatives
 - . Useful when sufficient data available

Conclusions

- Chemical Product Design is the identification of a small set of formulations likely to meet performance specifications, and which can be confirmed or refined through experimentation
- Product Design can accelerate new product development well beyond capabilities of experimentation alone