Pu-238 Supply Project-Technology Demonstration

Robert Wham

Presented to

Knoxville AIChE/ANS

February 19, 2015

Prepared by OAK RIDGE NATIONAL LABORATORY, Oak Ridge, Tennessee 37831-6283 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725

Radioisotope Power Systems

- Enable and enhance missions by providing electrical power to explore remote and challenging environments where solar power is unavailable
 - Spacecraft operation
 - Instrumentation
- Converts heat from a Radioisotope into electricity
 - Heat is the product of the natural decay process of the isotope

Over 50 years of RPS Missions

Operational Missions

- Voyager 1 & 2— Extended Operations
 - Launched: August 20, 1977 & September 5, 1977
 - Arrival at Jupiter, Saturn, Uranus, Neptune: 1979, 1980/1981, 1986, 1989
 - Science Mission duration: 35+ yr science
 - Power Source:
 - Three MHW-RTG
 - 474 W_e BOM

- Launched: October 15, 1997
- Arrival at destination: July 2004
- Science Mission duration: 7 yr. cruise
- 10+ yr science
- Power Source:
 - Three GPHS-RTG
 - ~885 W_e BOM

Operational Missions

- Pluto/New-Horizons On its Way (still)
 - Launched: January 19, 2006
 - Arrival at destination: July, 2015
 - Science Mission duration: 9.5 yr cruise
 - Power Source:
 - One GPHS-RTG
 - 243 W_e BOM; ~200 W_e at arrival
- Mars Science Laboratory Extended Mission
 - Launched: November 26, 2011
 - Gale Crater: August 6, 2012
 - Science Mission duration: ~ 2 yr (1 Martian year)
 - Power Source:
 - One MMRTG
 - ~110 W_e BOM; ~105 W_e at arrival

Where is New Horizons?

As of July 11th

Neptune

 New Horizons crossed the orbit of Neptune on August 25, 2014 — exactly 25 years after Voyager 2 made its historic exploration of that giant planet.

Projected Orbit Crossing Dates

Pluto: July 14, 2015

National Laboratory

Operational Missions

- Pluto/New-Horizons On its Way (still)
 - Launched: January 19, 2006
 - Arrival at destination: July, 2015
 - Science Mission duration: 9.5 yr cruise, 5 yr science
 - Power Source:
 - One GPHS-RTG
 - 243 W_e BOM; ~200 W_e at arrival
- Mars Science Laboratory Extended Mission
 - Launched: November 26, 2011
 - Gale Crater: August 6, 2012
 - Science Mission duration: ~ 2 yr (1 Martian year)
 - Power Source:
 - One MMRTG
 - ~110 W_e BOM; ~105 W_e at arrival

Radioisotope Power Systems

1-RHU mW-RPS Prototype

Radioisotope Heater Unit

- 300 RHUs have been used in 10 missions since 1969 to provide heat to the spacecraft
- Studies are underway to evaluate their use as a power source

Radioisotope Thermoelectric Generators

- 46 RTGs have been used spanning 27 missions
- MMRTG is currently powering Curiosity
- Voyager, Cassini, and New Horizons are RTG-powered as well
- Passive power source that provides reliable energy conversion

10

National Laboratory

Mars Rovers

MMRTG: Cutaway view

The MMRTG is designed to use heat from

General Purpose Heat Source (GPHS) modules.

The MMRTG contains a total of 4.8 kg (10.6 lb) of plutonium dioxide that initially provides approximately 2,000 watts of thermal power and 120 watts of electrical power.

COOLING TUBE

Next Potential RPS Mission

- An Multi-Mission Radioisotope Thermoelectric Generator is baselined to power the "Curiosity heritage" Mars 2020 rover
- Enable Mission Goals:
 - Exploring an ancient environment
 - Seeking any signs of past life on the planet
 - Gathering a scientifically compelling sample cache for possible future return to Earth
 - Demonstrating key technologies for future robotic and human exploration

Plutonium-238 is Produced in a Nuclear Reactor via Neutron Capture and Beta

Reactor Characteristics Desired for Efficient ²³⁷Np Conversion to ²³⁸Pu

Characteristic	Desired to maximize ²³⁸ Pu	Desired to minimize ²³⁶ Pu impurity
Neutron spectrum	High thermal flux O(10 ¹⁴)	Minimize high energy flux (>7 MeV)
Photon spectrum	N/A	Minimize high energy flux (>7 MeV)
Target size	Large diameter	Small diameter
Neptunium loading	Maximize loading	Minimize loading

Pu-238 Was Produced Using the Weapons Production Infrastructure at SRS

- Irradiation of neptunium oxide mixed with aluminum powder in aluminum clad targets to produce Pu-238
- Target fabrication was based on larger annular (~3" O.D., ~12' long) targets that were designed for heavy water moderated production reactors
- Reactor target volume allowed large batches of Pu-238 to be made in a single campaign (~12 kg batches)
- H-canyon was used for recovery of Pu-238 as product and Np-237 for recycle
- Funding for operations was incremental to baseline weapons programs

The US DOE and NASA Have a Project Underway to Re-establish a Domestic ²³⁸Pu Production

The Path to ²³⁸Pu Production Requires Integration of Several Process Steps Using Existing DOE Facilities

There are Several Stages of Development That Need to be Accomplished to Produce ²³⁸Pu

Neptunium Conversion to Oxide

Target
Fabrication,
Irradiation, and
Post-Irradiation
Examination

Chemical Separations

Chemical Processing Study Results: Existing REDC Hot Cells Can Meet Current Projections for ²³⁸Pu Production

Currently operating with approved DOE Category 2 Safety Basis – Pu-238 production requires SAR update with similar safety envelope

Process equipment in place to dissolve, separate, recover and purify Np/Pu products and dispose of fission product wastes

Fully remotely operated and maintained

In-house analytical chemistry to support initial R&D activities

Optimization studies should be conducted to determine opportunities to enhance operations

Production of 2 kg/year of ²³⁸Pu in Existing Facilities at ORNL

The Advanced Test Reactor and the High Flux Isotope Reactor Will Both Be Used to Produce ²³⁸Pu

Advanced Test Reactor (ATR)

Reflector positions and flux traps can be used to irradiate NpO_2 at ATR

High Flux Isotope Reactor (HFIR)

Reflector can be used to irradiate NpO₂ in the HFIR

INL has Installed a Neptunium Oxide Repackaging Glovebox

- Installation is complete
- The first shipment anticipated in mid to late FY 2015

Target Design and Irradiation Focused on Development of Full Length Target Design

2012-037 RMW

Target Irradiation Has Been Scaled Up By >100X

Leading to fully loaded test targets

About 1100 g of NpO₂ will have been irradiated at the conclusion of the November irradiation cycle

Several Chemical Separations Are Needed for Efficient Plutonium and Neptunium Recovery

- Separate Pu and Np from fission products
 - Maximize recovery
- Recover Pu-238 product
 - Meet LANL product specs
- Recover Np-237 for recycle
 - Low fission product content for use in shielded gloveboxes
 - Pu-238 content <300 ppm
- Approach:
 - Solvent extraction for first-cycle separations
 - Purification of Np and Pu products by anion exchange or second-cycle solvent extraction

Process Chemistry of Np, ²³⁸Pu needs to be Developed and Demonstrated to Ensure Delivery of 1.5 kg/year

Current Tasks Focus on Chemical Processing to Recover Np/Pu

Co-extraction and Partitioning was Tested to Evaluate Pu and Np Recovery

1. Coextraction

- Remove FPs
- Oxidize Np(V)
- Recover Np and Pu

2. Partitioning

- Reduce Np and strip in aqueous phase
- Retain Pu in organic phase

3. Stripping

 Reduce Pu and recover in aqueous phase

Good Progress Has Been Made In Solvent Extraction Testing

- Excellent recovery of Pu and Np in coextraction
 - Oxidation works with high Np concentration and presence of Pu-238
 - Model predicts oxidation performance reasonably well
- Good partitioning performance with sufficient nitrite
 - Np product has low Pu concentration (20-35 ppm)
 - Up to 97% recovery of Np in first-cycle Np product
- There is opportunity for improvement of kinetic models for Np reduction (a significant amount of Np went with the Pu product)
- Next testing will focus on
 - Fission-product decontamination factors
 - Second-cycle purification of Np product

There Have Been Several Significant Accomplishments Since the Project Started

- Neptunium oxide repackaging capability for shipping containers to ORNL has been obtained at INL.
- Target design and fabrication have been scaled up to prototypical targets; approximately 50 targets have been irradiated to date.
- Chemical processing tests using approximately 500 gm Np/Pu at concentrations expected for production are underway to develop improved methods for separation and recovery of both neptunium and plutonium.

Acknowledgements

- NASA Planetary Sciences Directorate
- Dozens of ORNL employees in eight ORNL Research Divisions
- US DOE Office of Space and Defense Power Systems, NE-75

Methodology for Online Process Monitor Development

